Fibred Path Categories

Taichi Uemura

May 8, 2019

1 Path Categories

We review the theory of path categories [1].

Definition 1. A path category is a category C equipped with two classes \mathscr{F} and \mathscr{W} of arrows in C satisfying the following axioms. Here we call an arrow in \mathscr{F} a fibration and an arrow in \mathscr{W} a weak equivalence. An arrow that is both a fibration and weak equivalence is called an *acyclic fibration*.

- 1 ${\mathcal C}$ has a terminal object 1 and every arrow $A \to 1$ to the terminal object is a fibration.
- 2 Fibrations are closed under composition.
- 3 The pullback of a fibration along any arrow exists and is again a fibration.
- 4 The pullback of an acyclic fibration along any arrow exists and is again an acyclic fibration.
- 5 Weak equivalences satisfy 2-out-of-6: if $f : A \to B$, $g : B \to C$ and $h : C \to D$ are composable arrows and both gf and hg are weak equivalences, then so are f, g, h and hgf.
- 6 Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
- 7 For any object A, there exists a *path object* PA, that is, an object PA equipped with a weak equivalence $r : A \to PA$ and a fibration $(s, t) : PA \to A \times A$ (the product $A \times A$ exists by Axioms 1 and 3) such that the composite (s, t)r is the diagonal $A \to A \times A$.

It is known that Axiom 7 of Definition 1 is, under the other assumptions, equivalent to the following stronger condition.

7' For any arrow $f : A \to B$, there exist an object C, a weak equivalence $g : A \to C$ and a fibration $h : C \to B$ such that hg = f.

In particular, for a fibration $A \to C$, we have a *path object* $P_C A$ of A over C, that is, an object $P_C A$ equipped with a weak equivalence $r : A \to P_C A$ and a fibration $(s,t) : P_C A \to A \times_C A$ (the fibre product $A \times_C A$ exists by Axiom 3) such that the composite (s,t)r is the diagonal $A \to A \times_C A$.

Definition 2. Let C be a path category. Let $A \to C$ be an arrow, $B \to C$ a fibration and $f, g: A \to B$ arrows over C. A homotopy from f to g over C is an arrow $h: A \to P_C B$ into some path object of B over C such that $\mathfrak{sh} = f$ and $\mathfrak{th} = g$. We write $f \simeq_C g$ when there exists a homotopy from f to g over C.

Theorem 3 (Van den Berg and Moerdijk [1, Theorem 2.38]). Let C be a path category, $D \in C$ an object, $A \to D$ and $B \to D$ arrows, $C \to D$ a fibration, and $f: A \to B$ and $g: A \to C$ arrows over D. If f is a weak equivalence, then there exists an arrow $h: B \to C$ over D such that $hf \simeq_D g$.

Definition 4. We say a functor $F : \mathcal{C} \to \mathcal{D}$ between path categories is *exact* if it preserves terminal objects, fibrations, weak equivalences and pullbacks of fibrations.

Definition 5. We say an exact functor $F : \mathcal{C} \to \mathcal{D}$ between path categories is a *weak equivalence* if it induces an equivalence between the homotopy categories.

2 Fibred Path Categories

Definition 6. Let \mathcal{B} be a path category. A fibred path category over \mathcal{B} is a category \mathcal{E} equipped with a functor $Q : \mathcal{E} \to \mathcal{B}$ and two classes \mathscr{F} and \mathscr{W} of arrows of \mathcal{E} satisfying the following axioms. Here we call an arrow in \mathscr{F} a fibration, an arrow in \mathscr{W} a weak equivalence and an arrow in $\mathscr{F} \cap \mathscr{W}$ an acyclic fibration.

- $1\ Q$ is a Grothendieck fibration.
- 2 Q sends fibrations and weak equivalences in \mathcal{E} to fibrations and weak equivalences, respectively, in \mathcal{B} .
- 3 Fibrations and weak equivalences in \mathcal{E} are stable under reindexing: for an arrow $f: A_1 \to A_2$ in \mathcal{E} , an arrow $u: I_1 \to I_2$ in \mathcal{B} and a square $(v_1, v_2): u \to Qf$, if f is a fibration (weak equivalence) in \mathcal{E} and u is a fibration (weak equivalence) in \mathcal{B} , then the induced arrow $(v_1, v_2)^* f: v_1^* A_1 \to v_2^* A_2$

in \mathcal{E} over u is a fibration (weak equivalence).

- 4 \mathcal{E} has a terminal object 1 preserved by Q and every arrow $A \to 1$ to the terminal object in \mathcal{E} is a fibration.
- 5 Fibrations in \mathcal{E} are closed under composition.
- 6 The pullback of a fibration in \mathcal{E} along any arrow exists and is again a fibration and preserved by Q.
- 7 The pullback of an acyclic fibration in \mathcal{E} along any arrow exists and is again an acyclic fibration and preserved by Q.
- 8 Weak equivalences in \mathcal{E} satisfy 2-out-of-6.
- 9 Isomorphisms are acyclic fibrations and every acyclic fibration has the section lifting property: for any acyclic fibration $f : A \to B$ in \mathcal{E} and section $v : QB \to QA$ of Qf, there exists a section $g : B \to A$ of f over v.
- 10 For any object A in \mathcal{E} and any path object $(I, \bar{\mathbf{r}}, \bar{\mathbf{s}}, \bar{\mathbf{t}})$ of QA, there exists a path object P_IA of A over I, that is, an object $P_IA \in \mathcal{E}$ over I equipped with a weak equivalence $\mathbf{r} : A \to P_IA$ over $\bar{\mathbf{r}}$ and a fibration $(\mathbf{s}, \mathbf{t}) : P_IA \to A \times A$ over $(\bar{\mathbf{s}}, \bar{\mathbf{t}})$ (the product $A \times A$ exists and is over $QA \times QA$ by Axioms 4 and 6) such that the composite (\mathbf{s}, \mathbf{t}) r is the diagonal $A \to A \times A$.

Axioms 9 and 10 of Definition 6 are, under the other assumptions, equivalent to the following stronger conditions.

- 9' Isomorphisms are acyclic fibrations and, for any arrow $A \to C$ and acyclic fibration $B \to C$ in \mathcal{E} and arrow $u : QA \to QB$ over QC, there exists an arrow $f : A \to B$ over C and over u.
- 10' For any arrow $f: A \to B$ in \mathcal{E} , object $K \in \mathcal{B}$, weak equivalence $v: QA \to K$ and fibration $w: K \to QB$ such that wv = Qf, there exist an object $C \in \mathcal{E}$ over K, a weak equivalence $g: A \to C$ over v and a fibration $h: C \to B$ over w such that hg = f.

Remark 7. The stability under reindexing (Axiom 3 of Definition 6) contains some important cases:

- a cartesian arrow over a fibration (weak equivalence) is a fibration (weak equivalence) (when f = 1 and $v_2 = 1$). By a *horizontal fibration (weak equivalence)* we mean a cartesian arrow over a fibration (weak equivalence);
- every fibration (weak equivalence) in \mathcal{E} factors as a vertical fibration (weak equivalence) followed by a horizontal fibration (weak equivalence) (when u = 1 and $v_1 = 1$);
- the reindexing along an arbitrary arrow preserves vertical fibrations (weak equivalences) (when u = 1 and Qf = 1).

One can show that these three conditions are equivalent to Axiom 3 under the assumption that isomorphisms are fibrations (weak equivalences) and fibrations (weak equivalences) are closed under composition.

Example 8. Let \mathcal{C} be a path category. We denote by $(\mathcal{C}^{\rightarrow})_{\rm f}$ the full subcategory of $\mathcal{C}^{\rightarrow}$ consisting of fibrations. The category $(\mathcal{C}^{\rightarrow})_{\rm f}$, together with the codomain functor $(\mathcal{C}^{\rightarrow})_{\rm f} \rightarrow \mathcal{C}$, is a fibred path category over \mathcal{C} with the Reedy fibrations and the levelwise weak equivalences.

Definition 9. Let \mathcal{E} and \mathcal{F} be fibred path categories over a path category \mathcal{B} . A *fibred exact functor* $\mathcal{E} \to \mathcal{F}$ *over* \mathcal{B} is a fibred functor $S : \mathcal{E} \to \mathcal{F}$ over \mathcal{B} that preserves terminal objects, fibrations, weak equivalences and pullbacks of fibrations.

2.1 The Total Path Category

Theorem 10. Let $Q : \mathcal{E} \to \mathcal{B}$ be a Grothendieck fibration and suppose the following:

- *B* is a path category;
- \mathcal{E} is equipped with a class of fibrations and a class of weak equivalences;
- fibrations and weak equivalences in \mathcal{E} are stable under reindexing.

Then \mathcal{E} , together with Q, is a fibred path category over \mathcal{B} if and only if \mathcal{E} is a path category and Q is an exact functor.

Proof. The "only if" part is immediate from the definition. To show the "if" part, suppose that \mathcal{E} is a path category and Q is an exact functor. We have to check that \mathcal{E} satisfies Axioms 1 to 10 of Definition 6. The axioms other than Axioms 9 and 10 are satisfied by assumption.

For Axiom 9, let $f: A \to B$ be an acyclic fibration in \mathcal{E} and $v: QB \to QA$ a section of $Qf: QA \to QB$. One can factor f as a vertical acyclic fibration $f_1: A \to A_1$ followed by a horizontal acyclic fibration $f_2: A_1 \to B$. By the cartesianness of f_2 , we have a section $g_2: B \to A_1$ of f_2 over v. There exists a section $g_1: A_1 \to A$ of $f_1: A \to A_1$. Since f_1 is vertical, g_1 must be vertical. Then $g_1g_2: B \to A$ is a section of $f = f_2f_1: A \to B$ over v.

For Axiom 10, we first show the following *homotopy lifting property*.

Lemma 11. Let $A \to C$ be an arrow and $B \to C$ a fibration in \mathcal{E} . For arrows $f : A \to B$ over C and $v : QA \to QB$ over QC such that $Qf \simeq_{QC} v$, there exists an arrow $g : A \to B$ over C and over v such that $f \simeq_C g$.

Proof. Let $P_C B$ be a path object of B over C. Since $Qf \simeq_{QC} v$, there exists an arrow $w : QA \to Q(P_C B)$ such that (Qs)w = Qf and (Qt)w = v. Since $s : P_C B \to B$ is an acyclic fibration, we have an arrow $h : A \to P_C B$ over wsuch that sh = f, using the section lifting property. Let $g = th : A \to B$. Then $f \simeq_C g$ by definition and we have Qg = Q(th) = (Qt)w = v.

Let $A \in \mathcal{E}$ be an object and $(I, \bar{\mathbf{r}}, \bar{\mathbf{s}}, \bar{\mathbf{t}})$ a path object of QA. Let $(B_0, \mathbf{r}_0, \mathbf{s}_0, \mathbf{t}_0)$ be a path object of A. Since $\bar{\mathbf{r}} : QA \to I$ is a weak equivalence and $(Q\mathbf{s}_0, Q\mathbf{t}_0) : QB_0 \to QA \times QA$ is a fibration, we have an arrow $u : I \to QB_0$ over $QA \times QA$ such that $u\bar{\mathbf{r}} \simeq_{QA \times QA} Q\mathbf{r}_0$ by Theorem 3. Since $Q\mathbf{r}_0$ and $\bar{\mathbf{r}}$ are weak equivalences, so is u. Let $B = u^*B_0$ and $f : B \to B_0$ the cartesian arrow over u. Since u is a weak equivalence, so is f. By the stability of fibrations under reindexing, the composite $(\mathbf{s}, \mathbf{t}) := (\mathbf{s}_0, \mathbf{t}_0)f : B \to A \times A$ is a fibration over $(\bar{\mathbf{s}}, \bar{\mathbf{t}})$. By Lemma 11, there exists an arrow $\mathbf{r}_1 : A \to B_0$ over $A \times A$ and over $u\bar{\mathbf{r}}$ such that $\mathbf{r}_0 \simeq_{A \times A} \mathbf{r}_1$. Since \mathbf{r}_0 is a weak equivalence, so is \mathbf{r}_1 . By the cartesianness of f, we have the unique arrow $\mathbf{r} : A \to B$ over $\bar{\mathbf{r}}$ such that $f\mathbf{r} = \mathbf{r}_1$. Since \mathbf{r}_1 and f are weak equivalences, so is \mathbf{r} . Then $(B, \mathbf{r}, \mathbf{s}, \mathbf{t})$ is a path object of A over $(I, \bar{\mathbf{r}}, \bar{\mathbf{s}}, \bar{\mathbf{t}})$.

2.2 Base Change

Proposition 12. Let \mathcal{E} be a fibred path category over a path category \mathcal{B} , \mathcal{A} a path category and $F : \mathcal{A} \to \mathcal{B}$ a functor. If F preserves fibrations and weak equivalences, then the base change $F^*\mathcal{E}$ is a fibred path category over \mathcal{A} , where an arrow $(u, f) : (I, A) \to (J, B)$ in $F^*\mathcal{E} = \mathcal{A} \times_{\mathcal{B}} \mathcal{E}$ is a fibration (weak equivalence) if u is a fibration (weak equivalence) in \mathcal{A} and f is a fibration (weak equivalence) in \mathcal{E} .

Proof. Immediate from the definition.

Proposition 13. Let \mathcal{E} be a fibred path category over a path category \mathcal{B} , \mathcal{A} a path category, $F, G : \mathcal{A} \to \mathcal{B}$ functors that preserve fibrations and weak equivalences,

and $\sigma: F \Rightarrow G$ a natural transformation. Then the fibred functor $\sigma^*: G^* \mathcal{E} \to F^* \mathcal{E}$ over \mathcal{A} defined by the reindexing along σ is a fibred exact functor.

Proof. Immediate from the definition.

Corollary 14. Let \mathcal{E} be a fibred path category over a path category \mathcal{B} .

- 1. For any object $I \in \mathcal{B}$, the fibre \mathcal{E}^{I} is a path category, where fibrations and weak equivalences are inherited from \mathcal{E} .
- 2. For any arrow $u: I \to J$ in \mathcal{B} , the reindexing functor $u^*: \mathcal{E}^J \to \mathcal{E}^I$ is an exact functor.

Proof. Use Propositions 12 and 13 with functors from the terminal path category which automatically preserve fibrations and weak equivalences. \Box

2.3 Indexed Path Categories

Definition 15. Let \mathcal{B} be a path category. A \mathcal{B} -indexed path category is a \mathcal{B} -indexed category \mathbb{E} satisfying the following conditions:

- \mathbb{E}^{I} is a path category for every object $I \in \mathcal{B}$;
- $u^* : \mathbb{E}^J \to \mathbb{E}^I$ is an exact functor for every arrow $u : I \to J$ in \mathcal{B} ;
- $u^* : \mathbb{E}^J \to \mathbb{E}^I$ is a weak equivalence of path categories for every weak equivalence $u : I \to J$ in \mathcal{B} .

Definition 16. Let \mathcal{B} be a path category and \mathbb{E} and \mathbb{F} be \mathcal{B} -indexed path categories. A \mathcal{B} -indexed exact functor $\mathbb{E} \to \mathbb{F}$ is a \mathcal{B} -indexed functor $S : \mathbb{E} \to \mathbb{F}$ such that $S^I : \mathbb{E}^I \to \mathbb{F}^I$ is an exact functor for every object $I \in \mathcal{B}$.

Proposition 17. Let \mathcal{B} be a path category and \mathbb{E} a \mathcal{B} -indexed path category. Then the Grothendieck construction $\int_{\mathcal{B}} \mathbb{E}$, together with the projection $\int_{\mathcal{B}} \mathbb{E} \to \mathcal{B}$, is a fibred path category over \mathcal{B} where an arrow $(u, f) : (I, A) \to (J, B)$ in $\int_{\mathcal{B}} \mathbb{E}$ is defined to be a fibration (weak equivalence) if $u : I \to J$ is a fibration (weak equivalence) in \mathcal{B} and $f : A \to u^*B$ is a fibration (weak equivalence) in \mathbb{E}^I .

Proof. Exercise.

Lemma 18. Let \mathcal{E} be a fibred path category over a path category \mathcal{B} and $u: I \to J$ a weak equivalence in \mathcal{B} . Then the reindexing functor $u^*: \mathcal{E}^J \to \mathcal{E}^I$ is a weak equivalence of path categories.

Proof. Exercise.

Theorem 19. Let \mathcal{B} be a path category. The Grothendieck construction $\mathbb{E} \mapsto \int_{\mathcal{B}} \mathbb{E}$ is part of a biequivalence between the 2-category of \mathcal{B} -indexed path categories and the 2-category of fibred path categories over \mathcal{B} .

Proof. By Corollary 14 and Lemma 18, $(\int_{\mathcal{B}} -)$ is biessentially surjective on objects. To show that $(\int_{\mathcal{B}} -)$ is a local equivalence, it suffices to show that a \mathcal{B} -indexed functor $S : \mathbb{E} \to \mathbb{F}$ between \mathcal{B} -indexed path categories is a \mathcal{B} -indexed exact functor if and only if $\int_{\mathcal{B}} S : \int_{\mathcal{B}} \mathbb{E} \to \int_{\mathcal{B}} \mathbb{F}$ is a fibred exact functor over \mathcal{B} , which is left as an exercise.

References

Benno van den Berg and Ieke Moerdijk. "Exact completion of path categories and algebraic set theory: Part I: Exact completion of path categories". In: *Journal of Pure and Applied Algebra* 222.10 (2018), pp. 3137–3181. ISSN: 0022-4049. DOI: 10.1016/j.jpaa.2017.11.017.