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Differences between ZFC and NGB

The universe of ZFC consists of sets. (classes are formulas)

The universe of NBG consists of classes, some classes are sets.

Theorem

NBG is a conservative extension of ZFC, that is, they both prove the

same statements about sets.

Note that this shows that ZFC and NBG are equiconsistent.

Theorem

NBG is finitely axiomatizable, ZFC is not.
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Background

ZFC is named after Ernst Zermelo and Abraham Fraenkel:

1908 Zermelo proposed the first axiomatic set theory,

1922 Fraenkel added the axiom of foundation and the axiom

schema of replacement.

NBG is named after John von Neumann, Paul Bernays and Kurt Gödel:

1925 Neumann introduced classes into set theory, his theory used

arguments and functions as primitive notions;

1929 Bernays reformulated to use sets and classes instead;

1931 Gödel simplified by making every set a class.
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Conventions

A set is a class that is an element of another class.

A proper class is a class that is not a set .

We use uppercase letters for classes and lowercase letters for sets.

To shorten notation we will write:

∃𝑥𝜙(𝑥) instead of ∃𝑋(∃𝑌 (𝑋 ∈ 𝑌 ) ∧ 𝜙(𝑋)),
∀𝑥𝜙(𝑥) instead of ∀𝑋(∃𝑌 (𝑋 ∈ 𝑌 ) → 𝜙(𝑋)).
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Axioms (basics)

Axiom (extensionality)

∀𝐴∀𝐵(∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → 𝐴 = 𝐵).

Axiom (foundation)

∀𝐴(∃(𝑥 ∈ 𝐴) → ∃(𝑥 ∈ 𝐴)∀(𝑦 ∈ 𝐴)(𝑦 ∉ 𝑥)).
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Axioms (sets)

Axiom (pair)

∀𝑎∀𝑏∃𝑐∀𝑥(𝑥 ∈ 𝑐 ↔ 𝑥 = 𝑎 ∨ 𝑥 = 𝑏).

Axiom (union)

∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑎)).

Axiom (power set)

∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑎)).

Axiom (infinity)

∃𝑎(∃(𝑥 ∈ 𝑎) ∧ ∀(𝑥 ∈ 𝑎)∃(𝑦 ∈ 𝑎)(𝑦 ≠ 𝑥 ∧ ∀(𝑧 ∈ 𝑥)(𝑧 ∈ 𝑦)).
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Axioms (comprehension)

As usual we define ⟨𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}} and:

⟨𝑥1, … , 𝑥𝑛⟩ = ⟨⟨𝑥1, … , 𝑥𝑛−1⟩, 𝑥𝑛⟩.

Axiom Scheme (comprehension)

For every formula 𝜙( ⃗𝐴, ⃗𝑥) that only quantifies over sets:

∀ ⃗𝐴∃𝐵∀ ⃗𝑥(⟨ ⃗𝑥⟩ ∈ 𝐵 ↔ 𝜙( ⃗𝐴, ⃗𝑥)).
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Axioms (replacement)

A function is a class 𝐹 such that we have:

fun(𝐹) = ∀(𝑧 ∈ 𝐹)(∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩)) ∧
∀𝑥∀𝑦∀𝑧(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹 → 𝑦 = 𝑧).

Axiom (replacement)

∀𝐹∀𝑎(fun(𝐹) → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃(𝑥 ∈ 𝑎)(⟨𝑥, 𝑦⟩ ∈ 𝐹))).

Axiom (global choice)

∃𝐹(fun(𝐹) ∧ ∀𝑥(∃(𝑦 ∈ 𝑥) → ∃(𝑦 ∈ 𝑥)(⟨𝑥, 𝑦⟩ ∈ 𝐹)).
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Comparison of ZFC and NBG

ZFC NBG

extensionality extensionality

foundation foundation

pair pair

union union

power set power set

infinity infinity

scheme of seperation scheme of comprehension

scheme of replacement replacement

choice global choice
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Theorems

Theorem (seperation)

If 𝑎 is a set and 𝐵 ⊆ 𝑎 then 𝐵 is a set.

Proof. With comprehension take 𝐼𝐵 = {⟨𝑥, 𝑥⟩ | 𝑥 ∈ 𝐵}. Then the

image of 𝑎 under 𝐼𝐵 is 𝐵 so by replacement 𝐵 is a set. �

Theorem (limitation of size)

A class is a proper class iff it has a bijection to the universal class 𝑉.

Proof Sketch. By global choice every class 𝐶 has a well-ordering,

this gives an injection 𝐶 → Ord whose image is an initial segment.

If it is not surjective then 𝐶 is a set, otherwise |𝐶| = |Ord|. By the
same reasoning we also get |𝑉 | = |Ord| so |𝐶| = |Ord| = |𝑉 |. �
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NBG is finitely axiomatizable

Theorem

NBG is finitely axiomatizable.

The axiom scheme of comprehension gives infinitely many axioms,

we show that we only need 7 of them.

To do this we show that we can prove every instance of

comprehension using the other NBG axioms and these 7 instances.
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NBG is finitely axiomatizable: Axioms (formula)

Axiom (complement/negation)

∀𝐴∃𝐵∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∉ 𝐴).

Axiom (union/disjunction)

∀𝐴∀𝐵∃𝐶∀𝑥(𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).

Axiom (domain/existential)

∀𝐴∃𝐵∀𝑥(𝑥 ∈ 𝐵 ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴)).
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NBG is finitely axiomatizable: Proof (preliminaries)

Suppose that we have classes 𝐴1, … , 𝐴𝑚 and a formula

𝜙(𝐴1, … , 𝐴𝑚, 𝑥1, … , 𝑥𝑛) only quantifying over sets. We show:

∃𝐶𝜙∀𝑥1 … ∀𝑥𝑛(⟨𝑥1, … , 𝑥𝑛⟩ ∈ 𝐶𝜙 ↔ 𝜙(𝐴1, … , 𝐴𝑚, 𝑥1, … , 𝑥𝑛)).

First we transform 𝜙 to a more manageable equivalent form:

1 Replace 𝐴𝑘 ∈ 𝛼 with ∃𝑦(𝑦 = 𝐴𝑘 ∧ 𝑦 ∈ 𝛼).
2 Replace 𝛼 = 𝛽 with ∀𝑧(𝑧 ∈ 𝛼 ↔ 𝑧 ∈ 𝛽).
3 Replace ∧, ∀, →, ↔ using ¬, ∨, ∃.
4 Replace ∃𝑦𝜓(𝑦) with ∃𝑥𝑛+𝑑𝜓(𝑥𝑥+𝑑) where 𝑑 is the quantifier

depth. Example: ∃𝑦(𝑦 ∈ 𝑥1 ∨ ∃𝑧(𝑧 ∈ 𝑥2)) ∨ ∃𝑧(𝑧 ∈ 𝑥1)
becomes ∃𝑥3(𝑥3 ∈ 𝑥1 ∨ ∃𝑥4(𝑥4 ∈ 𝑥2)) ∨ ∃𝑥3(𝑥3 ∈ 𝑥1).
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NBG is finitely axiomatizable: Proof (induction)

We construct 𝐶𝜙 using induction on the structure of 𝜙:

𝜙 = 𝑥𝑖 ∈ 𝑥𝑗 ⟹ 𝐶𝜙 = 𝐸𝑖,𝑗,𝑛 = {⟨𝑥1, … , 𝑥𝑛⟩ | 𝑥𝑖 ∈ 𝑥𝑗},
𝜙 = 𝑥𝑖 ∈ 𝐴𝑘 ⟹ 𝐶𝜙 = 𝐸′

𝑖,𝑘,𝑛 = {⟨𝑥1, … , 𝑥𝑛⟩ | 𝑥𝑖 ∈ 𝐴𝑘},
𝜙 = ¬𝜓 ⟹ 𝐶𝜙 = ∁𝐶𝜓,
𝜙 = 𝜓 ∨ 𝜒 ⟹ 𝐶𝜙 = 𝐶𝜓 ∪ 𝐶𝜒,
𝜙 = ∃𝑥𝑛+1𝜓 ⟹ 𝐶𝜙 = dom(𝐶𝜓),

The only thing left to check is that we can construct 𝐸𝑖,𝑗,𝑛 and 𝐸′
𝑖,𝑘,𝑛.
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NBG is finitely axiomatizable: Axioms (tuple)

Axiom (membership)

∃𝐴∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ 𝑥 ∈ 𝑦).

Axiom (product)

∀𝐴∀𝐵∃𝐶∀𝑧(𝑧 ∈ 𝐶 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)).

Axiom (transpose)

∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧(⟨𝑥, 𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦, 𝑧⟩ ∈ 𝐴).

Axiom (cycle)

∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧(⟨𝑦, 𝑧, 𝑥⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦, 𝑧⟩ ∈ 𝐴).
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NBG is finitely axiomatizable: Lemmas

Lemma (tuple)

1 ∀𝐴∃𝐵∀𝑥∀𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2 ∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧(⟨𝑧, 𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3 ∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧(⟨𝑥, 𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
4 ∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧(⟨𝑥, 𝑦, 𝑧⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)

Lemma (expansion)

If we have 𝑃 ⊆ 𝑉 × 𝑉 and 𝑖 ≠ 𝑗 then we can construct

𝑃𝑖,𝑗,𝑛 = {⟨𝑥1, … , 𝑥𝑛⟩ | ⟨𝑥𝑖, 𝑥𝑗⟩ ∈ 𝑃}.
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NBG is finitely axiomatizable: Proof (E and E’)

Note that by the membership axiom we have 𝐸 = {⟨𝑥, 𝑦⟩ | 𝑥 ∈ 𝑦}.

We construct 𝐸𝑖,𝑗,𝑛 = {⟨𝑥1, … , 𝑥𝑛⟩ | 𝑥𝑖 ∈ 𝑥𝑗} as follows:

• If 𝑖 = 𝑗 take 𝐸𝑖,𝑗,𝑛 = ∅ = ∁𝑉.
• If 𝑖 ≠ 𝑗 use the expansion lemma on 𝐸 to get 𝐸𝑖,𝑗,𝑛.

We construct 𝐸′
𝑖,𝑘,𝑛 = {⟨𝑥1, … , 𝑥𝑛⟩ | 𝑥𝑖 ∈ 𝐴𝑘} as follows:

• If 𝑛 = 1 take 𝐸′
𝑖,𝑘,𝑛 = 𝑌𝑘.

• If 𝑛 ≠ 1 use the expansion lemma on 𝑌𝑘 × 𝑉 to get 𝐸′
𝑖,𝑘,𝑛.

This completes the proof.
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MK
Morse–Kelley
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Differences between NBG and MK

There is only one difference between MK and NBG:

Axiom Scheme (comprehension)

For every formula 𝜙( ⃗𝐴, ⃗𝑥) that only quantifies over sets:

∀ ⃗𝐴∃𝐵∀ ⃗𝑥(⟨ ⃗𝑥⟩ ∈ 𝐵 ↔ 𝜙( ⃗𝐴, ⃗𝑥)).

Theorem

MK is not a conservative extension of ZFC.

Theorem

MK is not finitely axiomatizable.
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Background

MK is named after Anthony Morse and John Kelley:

1949 Wang first set out the theory.

1955 Kelley publicised a version of Morses theory in an appendix.

1965 Morse gave his version in an idiosyncratic formal language.
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Consistency

Theorem

MK can prove the consistency of ZFC and NBG.

Theorem

MK is equiconsistent with ZFC plus a strong inaccessiable cardianal.
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Discussion

How much stronger is MK than NBG?

How do we handle tuples for proper classes? We can still define pairs

by taking ⟨𝐶, 𝐷⟩ ≔ ({0} × 𝐶) ∪ ({1} × 𝐷).

How important is a finite axiomatization?

How do we want to handle collections which are too large?

• Ommit them like ZFC.

• Allow one more level like NBG and MK.

• Hierarchy of levels like type theory.
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