Adding Classes to Set Theory

$\mathrm{ZFC} \subseteq \mathrm{NBG} \subseteq \mathrm{MK}$

Daniël Otten

Von Neumann-Bernays-Gödel

Differences between ZFC and NGB

The universe of ZFC consists of sets. (classes are formulas)
The universe of NBG consists of classes, some classes are sets.

Theorem

NBG is a conservative extension of ZFC, that is, they both prove the same statements about sets.

Note that this shows that ZFC and NBG are equiconsistent.

Theorem

NBG is finitely axiomatizable, ZFC is not.

Background

ZFC is named after Ernst Zermelo and Abraham Fraenkel:
1908 Zermelo proposed the first axiomatic set theory,
1922 Fraenkel added the axiom of foundation and the axiom schema of replacement.

NBG is named after John von Neumann, Paul Bernays and Kurt Gödel:
1925 Neumann introduced classes into set theory, his theory used arguments and functions as primitive notions;

1929 Bernays reformulated to use sets and classes instead;
1931 Gödel simplified by making every set a class.

Conventions

A set is a class that is an element of another class.
A proper class is a class that is not a set .

We use uppercase letters for classes and lowercase letters for sets.
To shorten notation we will write:

$$
\begin{aligned}
& \exists x \phi(x) \text { instead of } \exists X(\exists Y(X \in Y) \wedge \phi(X)), \\
& \forall x \phi(x) \text { instead of } \forall X(\exists Y(X \in Y) \rightarrow \phi(X)) .
\end{aligned}
$$

Axioms (basics)

Axiom (extensionality)

$$
\forall A \forall B(\forall x(x \in A \leftrightarrow x \in B) \rightarrow A=B)
$$

Axiom (foundation)

$\forall A(\exists(x \in A) \rightarrow \exists(x \in A) \forall(y \in A)(y \notin x))$.

Axioms (sets)

Axiom (pair)

$\forall a \forall b \exists c \forall x(x \in c \leftrightarrow x=a \vee x=b)$.

Axiom (union)

$\forall a \exists b \forall x(x \in b \leftrightarrow \exists y(x \in y \wedge y \in a))$.

Axiom (power set)

$\forall a \exists b \forall x(x \in b \leftrightarrow \forall y(y \in x \rightarrow y \in a))$.

Axiom (infinity)

$\exists a(\exists(x \in a) \wedge \forall(x \in a) \exists(y \in a)(y \neq x \wedge \forall(z \in x)(z \in y))$.

Axioms (comprehension)

As usual we define $\langle x, y\rangle=\{\{x\},\{x, y\}\}$ and:

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle\left\langle x_{1}, \ldots, x_{n-1}\right\rangle, x_{n}\right\rangle .
$$

Axiom Scheme (comprehension)

For every formula $\phi(\vec{A}, \vec{x})$ that only quantifies over sets:

$$
\forall \vec{A} \exists B \forall \vec{x}(\langle\vec{x}\rangle \in B \leftrightarrow \phi(\vec{A}, \vec{x})) .
$$

Axioms (replacement)

A function is a class F such that we have:

$$
\begin{aligned}
\operatorname{fun}(F)= & \forall(z \in F)(\exists x \exists y(z=\langle x, y\rangle)) \wedge \\
& \forall x \forall y \forall z(\langle x, y\rangle \in F \wedge\langle x, z\rangle \in F \rightarrow y=z) .
\end{aligned}
$$

Axiom (replacement)

$\forall F \forall a(\operatorname{fun}(F) \rightarrow \exists b \forall y(y \in b \leftrightarrow \exists(x \in a)(\langle x, y\rangle \in F)))$.

Axiom (global choice)

$\exists F($ fun $(F) \wedge \forall x(\exists(y \in x) \rightarrow \exists(y \in x)(\langle x, y\rangle \in F))$.

Comparison of ZFC and NBG

ZFC	NBG
extensionality	extensionality
foundation	foundation
pair	pair
union	union
power set	power set
infinity	infinity
scheme of seperation	scheme of comprehension
scheme of replacement	replacement
choice	global choice

Theorems

Theorem (seperation)

If a is a set and $B \subseteq a$ then B is a set.
Proof. With comprehension take $I_{B}=\{\langle x, x\rangle \mid x \in B\}$. Then the image of a under I_{B} is B so by replacement B is a set.

Theorem (limitation of size)

A class is a proper class iff it has a bijection to the universal class V.
Proof Sketch. By global choice every class C has a well-ordering, this gives an injection $C \rightarrow$ Ord whose image is an initial segment. If it is not surjective then C is a set, otherwise $|C|=\mid$ Ord \mid. By the same reasoning we also get $|V|=|\operatorname{Ord}|$ so $|C|=|\operatorname{Ord}|=|V| . \quad \square$

NBG is finitely axiomatizable

Theorem

NBG is finitely axiomatizable.

The axiom scheme of comprehension gives infinitely many axioms, we show that we only need 7 of them.

To do this we show that we can prove every instance of comprehension using the other NBG axioms and these 7 instances.

NBG is finitely axiomatizable: Axioms (formula)

Axiom (complement/negation)
$\forall A \exists B \forall x(x \in B \leftrightarrow x \notin A)$.

Axiom (union/disjunction)

$\forall A \forall B \exists C \forall x(x \in C \leftrightarrow x \in A \vee x \in B)$.

Axiom (domain/existential)
$\forall A \exists B \forall x(x \in B \leftrightarrow \exists y(\langle x, y\rangle \in A))$.

NBG is finitely axiomatizable: Proof (preliminaries)

Suppose that we have classes A_{1}, \ldots, A_{m} and a formula
$\phi\left(A_{1}, \ldots, A_{m}, x_{1}, \ldots, x_{n}\right)$ only quantifying over sets. We show:

$$
\exists C_{\phi} \forall x_{1} \ldots \forall x_{n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle \in C_{\phi} \leftrightarrow \phi\left(A_{1}, \ldots, A_{m}, x_{1}, \ldots, x_{n}\right)\right) .
$$

First we transform ϕ to a more manageable equivalent form:
1 Replace $A_{k} \in \alpha$ with $\exists y\left(y=A_{k} \wedge y \in \alpha\right)$.
2 Replace $\alpha=\beta$ with $\forall z(z \in \alpha \leftrightarrow z \in \beta)$.
3 Replace $\wedge, \forall, \rightarrow, \leftrightarrow$ using \neg, \vee, \exists.
4 Replace $\exists y \psi(y)$ with $\exists x_{n+d} \psi\left(x_{x+d}\right)$ where d is the quantifier depth. Example: $\exists y\left(y \in x_{1} \vee \exists z\left(z \in x_{2}\right)\right) \vee \exists z\left(z \in x_{1}\right)$ becomes $\exists x_{3}\left(x_{3} \in x_{1} \vee \exists x_{4}\left(x_{4} \in x_{2}\right)\right) \vee \exists x_{3}\left(x_{3} \in x_{1}\right)$.

NBG is finitely axiomatizable: Proof (induction)

We construct C_{ϕ} using induction on the structure of ϕ :

$$
\begin{aligned}
& \phi=x_{i} \in x_{j} \Longrightarrow C_{\phi}=E_{i, j, n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in x_{j}\right\}, \\
& \phi=x_{i} \in A_{k} \Longrightarrow C_{\phi}=E_{i, k, n}^{\prime}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in A_{k}\right\}, \\
& \phi=\neg \psi \quad \Longrightarrow C_{\phi}=\mathrm{C} C_{\psi} \text {, } \\
& \phi=\psi \vee \chi \quad \Longrightarrow C_{\phi}=C_{\psi} \cup C_{\chi} \text {, } \\
& \phi=\exists x_{n+1} \psi \Longrightarrow C_{\phi}=\operatorname{dom}\left(C_{\psi}\right) \text {, }
\end{aligned}
$$

The only thing left to check is that we can construct $E_{i, j, n}$ and $E_{i, k, n}^{\prime}$.

NBG is finitely axiomatizable: Axioms (tuple)

Axiom (membership)

$\exists A \forall x \forall y(\langle x, y\rangle \in A \leftrightarrow x \in y)$.

Axiom (product)
$\forall A \forall B \exists C \forall z(z \in C \leftrightarrow \exists x \exists y(z=\langle x, y\rangle \wedge x \in A \wedge y \in B))$.
Axiom (transpose)
$\forall A \exists B \forall x \forall y \forall z(\langle x, z, y\rangle \in B \leftrightarrow\langle x, y, z\rangle \in A)$.

Axiom (cycle)

$\forall A \exists B \forall x \forall y \forall z(\langle y, z, x\rangle \in B \leftrightarrow\langle x, y, z\rangle \in A)$.

NBG is finitely axiomatizable: Lemmas

Lemma (tuple)

$$
\begin{aligned}
& 1 \forall A \exists B \forall x \forall y(\langle y, x\rangle \in B \leftrightarrow\langle x, y\rangle \in A) \\
& 2 \forall A \exists B \forall x \forall y \forall z(\langle z, x, y\rangle \in B \leftrightarrow\langle x, y\rangle \in A) \\
& 3 \forall A \exists B \forall x \forall y \forall z(\langle x, z, y\rangle \in B \leftrightarrow\langle x, y\rangle \in A) \\
& 4 \forall A \exists B \forall x \forall y \forall z(\langle x, y, z\rangle \in B \leftrightarrow\langle x, y\rangle \in A)
\end{aligned}
$$

Lemma (expansion)

If we have $P \subseteq V \times V$ and $i \neq j$ then we can construct

$$
P_{i, j, n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid\left\langle x_{i}, x_{j}\right\rangle \in P\right\} .
$$

NBG is finitely axiomatizable: Proof (E and E')

Note that by the membership axiom we have $E=\{\langle x, y\rangle \mid x \in y\}$.
We construct $E_{i, j, n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in x_{j}\right\}$ as follows:

- If $i=j$ take $E_{i, j, n}=\emptyset=\mathrm{CV}$.
- If $i \neq j$ use the expansion lemma on E to get $E_{i, j, n}$.

We construct $E_{i, k, n}^{\prime}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in A_{k}\right\}$ as follows:

- If $n=1$ take $E_{i, k, n}^{\prime}=Y_{k}$.
- If $n \neq 1$ use the expansion lemma on $Y_{k} \times V$ to get $E_{i, k, n}^{\prime}$.

This completes the proof.

Morse-Kelley

Differences between NBG and MK

There is only one difference between MK and NBG:

Axiom Scheme (comprehension)

For every formula $\phi(\vec{A}, \vec{x})$ that only quantifies over sets:

$$
\forall \vec{A} \exists B \forall \vec{x}(\langle\vec{x}\rangle \in B \leftrightarrow \phi(\vec{A}, \vec{x})) .
$$

Theorem
MK is not a conservative extension of ZFC.

Theorem

MK is not finitely axiomatizable.

Background

MK is named after Anthony Morse and John Kelley:
1949 Wang first set out the theory.
1955 Kelley publicised a version of Morses theory in an appendix.
1965 Morse gave his version in an idiosyncratic formal language.

Consistency

Theorem

MK can prove the consistency of ZFC and NBG.

Theorem

MK is equiconsistent with ZFC plus a strong inaccessiable cardianal.

Discussion

How much stronger is MK than NBG?

How do we handle tuples for proper classes? We can still define pairs by taking $\langle C, D\rangle:=(\{0\} \times C) \cup(\{1\} \times D)$.

How important is a finite axiomatization?

How do we want to handle collections which are too large?

- Ommit them like ZFC.
- Allow one more level like NBG and MK.
- Hierarchy of levels like type theory.

