Daniël Otten

Joint work with Benno van den Berg

Overview

We delineate the arithmetic of dependent type theory:

- Classical Result: type theories without universes are conservative over Heyting Arithmetic (HA). (Beeson 1979)
- Our Result: type theories with a single level of universes are conservative over Higher-order Heyting Arithmetic (HAH).

The precise conservativity depends on our interpretation of logic:

- Proof-irrelevant: type theories prove the same arithmetical theorems as HAH (of any order).
- Proof-relevant: type theories prove different second-order but the same first-order arithmetical theorems as HAH.

Contents

arithmetic type theory

Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^n$ or $\forall x^n$ then x is an element of the n-th powerset:

- x^0 is an element of the domain,
- x^1 is a set,
- x² is a set of sets,
- and so on.

For x^n and Y^{n+1} we have a new atomic formula: $x \in Y$. We have two new axiom schemes:

$$\forall X^{n+1} \forall Y^{n+1} (\forall z^n (z \in X \leftrightarrow z \in Y) \to X = Y), \qquad \text{(extensionality)}$$

$$\exists X^{n+1} \ \forall z^n \ (z \in X \leftrightarrow \phi[z]). \qquad \qquad \text{(specification)}$$

HAH has the axioms of PA but in intuitionistic higher-order logic.

type theory

Interpreting Logic in Type Theory

Using a universe \mathcal{U} , we can define powertypes:

$$\mathcal{P}A := A \to \mathcal{U}$$
.

Proof-irrelevant interpretation, using propositional truncation:

$$\begin{split} (A \vee B)^{\bullet} &:= \|A^{\bullet} + B^{\bullet}\|, \quad (\exists x^n \ B[x^n])^{\bullet} := \|\Sigma(x : \mathcal{P}^n \ \mathbb{N}) \ B[x^n]^{\bullet}\|, \\ (A \wedge B)^{\bullet} &:= \ A^{\bullet} \times B^{\bullet}, \quad (\forall x^n \ B[x^n])^{\bullet} := \ \Pi(x : \mathcal{P}^n \ \mathbb{N}) \ B[x^n]^{\bullet}, \\ (A \to B)^{\bullet} &:= \ A^{\bullet} \to B^{\bullet}. \end{split}$$

Proof-relevant interpretation:

$$\begin{split} (A \vee B)^\circ &:= A^\circ + B^\circ, \qquad (\exists x^n \, B[x^n])^\circ := \Sigma(x:\mathcal{P}^n \, \mathbb{N}) \, B[x^n]^\circ, \\ (A \wedge B)^\circ &:= A^\circ \times B^\circ, \qquad (\forall x^n \, B[x^n])^\circ := \Pi(x:\mathcal{P}^n \, \mathbb{N}) \, B[x^n]^\circ, \\ (A \to B)^\circ &:= A^\circ \to B^\circ. \end{split}$$

Contents

 $\boxed{\text{arithmetic}} \; \xleftarrow{} \; \text{type theory}$

Type Theory

We show conservativity for a strong theory: a version $\lambda C+$ of the Calculus of Inductive Constructions (Coq/Lean), which extends Martin-Löf type theory (Agda).

Type constructors: $\mathbb{O}, \mathbb{1}, \mathbb{2}, \dots, \mathbb{N}, \Sigma, \Pi, W, =, \| \cdot \|, /.$ Impredicative universes Prop, Set: Type:

- So if A: Type and $x:A \vdash B:$ Set then $\Pi(x:A)B[x]:$ Set.
- Prop is proof-irrelevant: all terms of a P : Prop are equal.
- Set is proof-relevant: contains data types such as N.

Extensionality, meaning that = and \equiv coincide, so:

- uniqueness of identity proofs,
- function extensionality.

We do not assume more universes Type, or that Prop : Set.

Contents

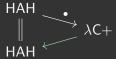
arithmetic = type theory

Theorem (proof-irrelevant interpretation)

 $\lambda C+$ proves the same formulas as HAH (of any order).

Proof Sketch. $\lambda C+$ derives the axioms and rules of HAH. The difficult part is showing that it does not prove more.

We build a model for $\lambda C+$ using only concepts of HAH. This gives us a realizability interpretation:



We show that the diagram commutes up to logical equivalence.

Model

In our model we interpret:

```
propositions \rightsquigarrow subsingletons, sets \rightsquigarrow partial equivalence relations (PER's), types \rightsquigarrow assemblies.
```

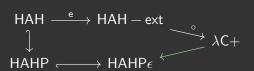
Variation on a well-known model for the Calculus of Constructions (Hyland1988, Reus1999), modified in two ways:

- we restrict sets to elements of some $\mathcal{P}^n \mathbb{N}$,
- we extend the interpretation to our larger theory $\lambda C+$.

Theorem (proof-relevant interpretation)

 $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. λ C+ proves choice but not extensionality. The following diagram commutes for first-order formulas:



e interprets HAH in HAH — ext by inductively redefining = and \in . HAHP adds primitive notions for partial recursive functions. HAHP ϵ adds partial choice functions as Hilbert epsilon constants. We show that HAHP ϵ conservatively extends HAH.

Theorem (proof-relevant interpretation)

 $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch.

e interprets HAH in HAH — ext by inductively redefining = and \in :

$$(x =_{\mathbf{e}}^{0} y) := (x =_{\mathbf{e}}^{0} y)$$

$$(X =_{\mathbf{e}}^{n+1} Y) := \forall z^{n} (z \in_{\mathbf{e}}^{n} X \leftrightarrow z \in_{\mathbf{e}}^{n} Y),$$

$$(x \in_{\mathbf{e}}^{n} Y) := \exists z^{n} (z =_{\mathbf{e}}^{n} x \land z \in_{\mathbf{e}}^{n} Y).$$

Theorem (proof-relevant interpretation)

 $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch.

HAH
$$\stackrel{e}{\longrightarrow}$$
 HAH $-$ ext \downarrow λ C+

HAHP adds primitive notions for partial recursive functions:

- We extend Beeson's logic of partial terms to higher-order logic.
- We add a primitive notion $\{x^0\}$ y^0 : intuitively the x-th partial recursive function applied to y.
- We add a primitive notion $t \downarrow$: the term t is defined.

Theorem (proof-relevant interpretation)

 $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch.

HAH
$$\stackrel{e}{\longrightarrow}$$
 HAH $-$ ext $\stackrel{\circ}{\longrightarrow}$ λ C+

 $\mathsf{HAHP}\epsilon$ adds partial choice functions as Hilbert epsilon constants:

• For every formula $\phi[\vec{x},y]$ a new constant $\epsilon^0_{u,\phi}$ and axioms:

$$\forall \vec{x} \, (\exists y \, \phi[\vec{x}, y] \to \{\epsilon_{y, \phi}\} \, \vec{x} \, \downarrow), \ \forall \vec{x} \, (\{\epsilon_{y, \phi}\} \, \vec{x} \, \downarrow \to \phi[\vec{x}, \{\epsilon_{y, \phi}\} \, \vec{x}]).$$

So, $\epsilon^0_{u,\phi}$ encodes a partial function sending \vec{x} to a y with $\phi[\vec{x},y]$.

Theorem (proof-relevant interpretation)

 $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. $\lambda C+$ proves choice but not extensionality. The following diagram commutes for first-order formulas:

HAH
$$\stackrel{e}{\longrightarrow}$$
 HAH $-$ ext $\stackrel{\circ}{\longrightarrow}$ λ C+

We show that HAHP ϵ conservatively extends HAH:

• We use proof theoretic forcing, oracles, and compactness.

Generalisations and Summary

Our methods restrict to systems in the lambda cube to show

 λ C+ is conservative over HAH, λ P2+ is conservative over HA2, λ P+ is conservative over HA.

where the interpretation of logic determines the conservativity:

- proof-irrelevant: conservative for all higher-order formulas,
- o proof-relevant: conservative for first but not second-order.