## Conservativity of Type Theory over Higher-order Arithmetic

## Overview

We delineate the arithmetic of dependent type theory:
> Classical Result: type theories without universes are conservative over Heyting Arithmetic (HA). (Beeson 1979)
> Our Result: strong type theories with a single level of universes are conservative over Higher-order Heyting Arithmetic (HAH).

The amount of conservativity depends on our interpretation of logic:

- Proof-irrelevant: type theories prove the same arithmetical theorems as HAH (of any order).
- Proof-relevant: type theories prove different second-order but the same first-order arithmetical theorems as HAH.

Contents

## arithmetic $\rightleftarrows$ type theory

## Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^{n}$ or $\forall x^{n}$ then $x$ is an element of the $n$-th powerset:
$>x^{0}$ is an element of the domain,
$>x^{1}$ is a set,
$>x^{2}$ is a set of sets,
> and so on.
For $x^{n}$ and $Y^{n+1}$ we have a new atomic formula: $x \in Y$.
We have two new axiom schemes:
$\forall X^{n+1} \forall Y^{n+1}\left(\forall z^{n}(z \in X \leftrightarrow z \in Y) \rightarrow X=Y\right)$, (extensionality)

$$
\exists X^{n+1} \forall z^{n}(z \in X \leftrightarrow \phi[z]) . \quad \text { (specification) }
$$

HAH has the axioms of PA but in intuitionistic higher-order logic.

Contents
arithmetic $\rightleftarrows$ type theory

## Interpreting Logic in Type Theory

Using a universe $\mathcal{U}$, we can define powertypes:

$$
\mathcal{P} A:=A \rightarrow \mathcal{U} .
$$

Proof-irrelevant interpretation, using propositional truncation:

$$
\begin{aligned}
&(A \vee B)^{\bullet}:=\left\|A^{\bullet}+B^{\bullet}\right\|,\left(\exists x^{n} B\left[x^{n}\right]\right) \bullet:=\left\|\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\bullet}\right\|, \\
&(A \wedge B)^{\bullet}:=A^{\bullet} \times B^{\bullet},\left(\forall x^{n} B\left[x^{n}\right]\right) \bullet=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\bullet}, \\
&(A \rightarrow B)^{\bullet}:=A^{\bullet} \rightarrow B^{\bullet} .
\end{aligned}
$$

Proof-relevant interpretation:

$$
\begin{aligned}
(A \vee B)^{\circ} & :=A^{\circ}+B^{\circ}, & \left(\exists x^{n} B\left[x^{n}\right]\right)^{\circ}:=\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\circ}, \\
(A \wedge B)^{\circ} & :=A^{\circ} \times B^{\circ}, & \left(\forall x^{n} B\left[x^{n}\right]\right)^{\circ}:=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\circ}, \\
(A \rightarrow B)^{\circ}:=A^{\circ} \rightarrow B^{\circ} . & &
\end{aligned}
$$

Contents
arithmetic $\rightleftarrows$ type theory

## Type Theory

We show conservativity for a strong theory:
a version $\lambda \mathrm{C}+$ of the Calculus of Inductive Constructions (Coq/Lean), which is stronger than Martin-Löf type theory (Agda).

Type constructors: $\mathbb{O}, \mathbb{1}, \mathbb{2}, \ldots, \mathbb{N}, \Sigma, \Pi, \mathrm{W},=,\|\cdot\|, /$.
Impredicative universes Prop, Set : Type:
> So if $A$ : Type and $x: A \vdash B:$ Set then $\Pi(x: A) B[x]:$ Set.
> Prop is proof-irrelevant: all terms of a $P$ : Prop are equal.
> Set is proof-relevant: contains data types such as $\mathbb{N}$.
Extensionality, meaning that $=$ and $\equiv$ coincide, so:
> uniqueness of identity proofs,
> function extensionality.
We do not assume more universes Type ${ }_{i}$ or that Prop : Set.

Contents
arithmetic $\rightleftarrows$ type theory

## Main Result (proof-irrelevant)

## Theorem (proof-irrelevant interpretation)

## $\lambda \mathrm{C}+$ proves the same formulas as HAH (of any order).

Proof Sketch. $\lambda \mathrm{C}+$ derives the axioms and rules of HAH.
The difficult part is showing that it does not prove more.
We build a model for $\lambda \mathrm{C}+$ using only concepts of HAH.
This gives us a realizability interpretation:


We show that the diagram commutes up to logical equivalence.

## Model

In our model we interpret:
propositions $\leadsto$ subsingletons,
sets $\leadsto$ partial equivalence relations (PER's),
types $\leadsto$ assemblies.
Variation on a well-known model for the Calculus of Constructions
(Hyland1988, Reus1999), modified in two ways:
> we restrict sets to elements of some $\mathcal{P}^{n} \mathbb{N}$,
> we extend the interpretation to our larger theory $\lambda \mathrm{C}+$.

## Main Result (proof-relevant)

## Theorem (proof-relevant interpretation)

## $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. $\lambda \mathrm{C}+$ does not prove extensionality but it proves choice.
The following diagram commutes for first-order formulas:

e interprets HAH in HAH - ext by inductively redefining $=$ and $\epsilon$.
HAHP adds primitive notions for partial recursive functions.
HAHP $\epsilon$ adds partial choice functions as Hilbert epsilon constants.
We show that HAHP $\epsilon$ conservatively extends HAH.

## Main Result (proof-relevant)

## Theorem (proof-relevant interpretation)

$\lambda C+$ proves distinct second, but the same first-order formulas as HAH.
Proof Sketch. $\lambda$ C+ does not prove extensionality but it proves choice.
The following diagram commutes for first-order formulas:

e interprets HAH in HAH - ext by inductively redefining $=$ and $\in$ :

$$
\begin{aligned}
\left(x==_{\mathrm{e}}^{0} y\right) & :=\left(x=^{0} y\right) \\
\left(X={ }_{\mathrm{e}}^{n+1} Y\right) & :=\forall z^{n}\left(z \in_{\mathrm{e}}^{n} X \leftrightarrow z \in_{\mathrm{e}}^{n} Y\right), \\
\left(x \in_{\mathrm{e}}^{n} Y\right) & :=\exists z^{n}\left(z={ }_{\mathrm{e}}^{n} x \wedge z \in^{n} Y\right) .
\end{aligned}
$$

## Main Result (proof-relevant)

## Theorem (proof-relevant interpretation)

## $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. $\lambda \mathrm{C}+$ does not prove extensionality but it proves choice.
The following diagram commutes for first-order formulas:


HAHP adds primitive notions for partial recursive functions:
> We extend Beeson's logic of partial terms to higher-order logic.
$>$ We add a new primitive notion $\left\{x^{0}\right\} y^{0}$, intuitively the $x$-th partial recursive function applied to $y$.

## Main Result (proof-relevant)

## Theorem (proof-relevant interpretation)

## $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. $\lambda$ C+ does not prove extensionality but it proves choice.
The following diagram commutes for first-order formulas:


HAHP $\epsilon$ adds partial choice functions as Hilbert epsilon constants:
> For every formula $\phi[\vec{x}, y]$ a new constant $\epsilon_{y \cdot \phi}^{0}$ and axioms:

$$
\forall \vec{x}\left(\exists y \phi[\vec{x}, y] \rightarrow\left\{\epsilon_{y \cdot \phi}\right\} \vec{x} \downarrow\right), \forall \vec{x}\left(\left\{\epsilon_{y \cdot \phi}\right\} \vec{x} \downarrow \rightarrow \phi\left[\vec{x},\left\{\epsilon_{y \cdot \phi}\right\} \vec{x}\right]\right) .
$$

So, $\epsilon_{y . \phi}^{0}$ encodes a partial function sending $\vec{x}$ to a $y$ with $\phi[\vec{x}, y]$.

## Main Result (proof-relevant)

## Theorem (proof-relevant interpretation)

## $\lambda C+$ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. $\lambda \mathrm{C}+$ does not prove extensionality but it proves choice.
The following diagram commutes for first-order formulas:


We show that HAHP $\epsilon$ conservatively extends HAH:
> We use proof theoretic forcing, oracles, and compactness.

## Generalisations and Summary

Our methods restrict to systems in the lambda cube to show
$\lambda \mathrm{C}+$ is conservative over HAH,
$\lambda \mathrm{P} 2+$ is conservative over HA2,
$\lambda \mathrm{P}+$ is conservative over HA,
where the interpretation of logic determines the conservativity:

- proof-irrelevant: conservative for all higher-order formulas,
- proof-relevant: conservative for first but not second-order.

Thank you!

