
Conservativity of

Type Theory
over

Higher-order Arithmetic

Daniël Otten Joint work with Benno van den Berg



Overview

We delineate the arithmetic of dependent type theory:

> Classical Result: type theories without universes

are conservative over Heyting Arithmetic (HA). (Beeson 1979)

> Our Result: strong type theories with a single level of universes

are conservative over Higher-order Heyting Arithmetic (HAH).

The amount of conservativity depends on our interpretation of logic:

• Proof-irrelevant: type theories prove the same

arithmetical theorems as HAH (of any order).

◦ Proof-relevant: type theories prove different second-order but

the same first-order arithmetical theorems as HAH.
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Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain.

If we write ∃𝑥𝑛 or ∀𝑥𝑛 then 𝑥 is an element of the 𝑛-th powerset:

> 𝑥0 is an element of the domain,

> 𝑥1 is a set,

> 𝑥2 is a set of sets,

> and so on.

For 𝑥𝑛 and 𝑌 𝑛+1 we have a new atomic formula: 𝑥 ∈ 𝑌.
We have two new axiom schemes:

∀𝑋𝑛+1∀𝑌 𝑛+1(∀𝑧𝑛(𝑧 ∈ 𝑋 ↔ 𝑧 ∈ 𝑌 ) → 𝑋 = 𝑌 ), (extensionality)
∃𝑋𝑛+1 ∀𝑧𝑛 (𝑧 ∈ 𝑋 ↔ 𝜙[𝑧]). (specification)

HAH has the axioms of PA but in intuitionistic higher-order logic.
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Interpreting Logic in Type Theory

Using a universe 𝒰, we can define powertypes:

𝒫 𝐴 ≔ 𝐴 → 𝒰.

Proof-irrelevant interpretation, using propositional truncation:

(𝐴 ∨ 𝐵)• ≔ ‖𝐴• + 𝐵•‖, (∃𝑥𝑛 𝐵[𝑥𝑛])• ≔ ‖Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]•‖,
(𝐴 ∧ 𝐵)• ≔ 𝐴• × 𝐵•, (∀𝑥𝑛 𝐵[𝑥𝑛])• ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]•,

(𝐴 → 𝐵)• ≔ 𝐴• → 𝐵•.

Proof-relevant interpretation:

(𝐴 ∨ 𝐵)◦ ≔ 𝐴◦ + 𝐵◦, (∃𝑥𝑛 𝐵[𝑥𝑛])◦ ≔ Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]◦,
(𝐴 ∧ 𝐵)◦ ≔ 𝐴◦ × 𝐵◦, (∀𝑥𝑛 𝐵[𝑥𝑛])◦ ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]◦,

(𝐴 → 𝐵)◦ ≔ 𝐴◦ → 𝐵◦.
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Type Theory

We show conservativity for a strong theory:

a version 𝜆C+ of the Calculus of Inductive Constructions (Coq/Lean),

which is stronger than Martin-Löf type theory (Agda).

Type constructors: 𝟘, 𝟙, 𝟚, … , ℕ, Σ, Π, W, =, ‖ ⋅ ‖, /.
Impredicative universes Prop, Set ∶ Type:
> So if 𝐴 ∶ Type and 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ Set then Π(𝑥 ∶ 𝐴)𝐵[𝑥] ∶ Set.
> Prop is proof-irrelevant: all terms of a 𝑃 ∶ Prop are equal.

> Set is proof-relevant: contains data types such as ℕ.

Extensionality, meaning that = and ≡ coincide, so:

> uniqueness of identity proofs,

> function extensionality.

We do not assume more universes Type𝑖 or that Prop ∶ Set. 6/11
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Main Result (proof-irrelevant)

Theorem (proof-irrelevant interpretation)

𝜆C+ proves the same formulas as HAH (of any order).

Proof Sketch. 𝜆C+ derives the axioms and rules of HAH.

The difficult part is showing that it does not prove more.

We build a model for 𝜆C+ using only concepts of HAH.

This gives us a realizability interpretation:

HAH

𝜆C+
HAH

•

We show that the diagram commutes up to logical equivalence.
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Model

In our model we interpret:

propositions ⇝ subsingletons,
sets ⇝ partial equivalence relations (PER’s),

types ⇝ assemblies.

Variation on a well-known model for the Calculus of Constructions

(Hyland1988, Reus1999), modified in two ways:

> we restrict sets to elements of some 𝒫𝑛 ℕ,

> we extend the interpretation to our larger theory 𝜆C+.
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Main Result (proof-relevant)

Theorem (proof-relevant interpretation)

𝜆C+ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. 𝜆C+ does not prove extensionality but it proves choice.

The following diagram commutes for first-order formulas:

HAH HAH − ext

𝜆C+
HAHP HAHP𝜖

e

◦

e interprets HAH in HAH − ext by inductively redefining = and ∈.
HAHP adds primitive notions for partial recursive functions.

HAHP𝜖 adds partial choice functions as Hilbert epsilon constants.

We show that HAHP𝜖 conservatively extends HAH.
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Proof Sketch. 𝜆C+ does not prove extensionality but it proves choice.

The following diagram commutes for first-order formulas:

HAH HAH − ext

𝜆C+
HAHP HAHP𝜖

e

◦

e interprets HAH in HAH − ext by inductively redefining = and ∈:

(𝑥 =0
e 𝑦) ≔ (𝑥 =0 𝑦)

(𝑋 =𝑛+1
e 𝑌 ) ≔ ∀𝑧𝑛(𝑧 ∈𝑛

e 𝑋 ↔ 𝑧 ∈𝑛
e 𝑌 ),

(𝑥 ∈𝑛
e 𝑌 ) ≔ ∃𝑧𝑛(𝑧 =𝑛

e 𝑥 ∧ 𝑧 ∈𝑛 𝑌 ).
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Main Result (proof-relevant)

Theorem (proof-relevant interpretation)

𝜆C+ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. 𝜆C+ does not prove extensionality but it proves choice.

The following diagram commutes for first-order formulas:

HAH HAH − ext

𝜆C+
HAHP HAHP𝜖

e

◦

HAHP adds primitive notions for partial recursive functions:

> We extend Beeson’s logic of partial terms to higher-order logic.

> We add a new primitive notion {𝑥0} 𝑦0,

intuitively the 𝑥-th partial recursive function applied to 𝑦.
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Main Result (proof-relevant)

Theorem (proof-relevant interpretation)

𝜆C+ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. 𝜆C+ does not prove extensionality but it proves choice.

The following diagram commutes for first-order formulas:

HAH HAH − ext

𝜆C+
HAHP HAHP𝜖

e

◦

HAHP𝜖 adds partial choice functions as Hilbert epsilon constants:

> For every formula 𝜙[ ⃗𝑥, 𝑦] a new constant 𝜖0
𝑦.𝜙 and axioms:

∀ ⃗𝑥 (∃𝑦 𝜙[ ⃗𝑥, 𝑦] → {𝜖𝑦.𝜙} ⃗𝑥 ↓), ∀ ⃗𝑥 ({𝜖𝑦.𝜙} ⃗𝑥 ↓ → 𝜙[ ⃗𝑥, {𝜖𝑦.𝜙} ⃗𝑥]).

So, 𝜖0
𝑦.𝜙 encodes a partial function sending ⃗𝑥 to a 𝑦 with 𝜙[ ⃗𝑥, 𝑦].
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Main Result (proof-relevant)

Theorem (proof-relevant interpretation)

𝜆C+ proves distinct second, but the same first-order formulas as HAH.

Proof Sketch. 𝜆C+ does not prove extensionality but it proves choice.

The following diagram commutes for first-order formulas:

HAH HAH − ext

𝜆C+
HAHP HAHP𝜖

e

◦

We show that HAHP𝜖 conservatively extends HAH:
> We use proof theoretic forcing, oracles, and compactness.
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Generalisations and Summary

Our methods restrict to systems in the lambda cube to show

𝜆C+ is conservative over HAH,
𝜆P2+ is conservative over HA2,
𝜆P+ is conservative over HA,

where the interpretation of logic determines the conservativity:

• proof-irrelevant: conservative for all higher-order formulas,

◦ proof-relevant: conservative for first but not second-order.

Thank you!
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