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Overview

We investigate the relation between arithmetic and type theory.

In dependent type theory, the number of universes influence how

much can prove about the natural numbers:

> Classical Result: ML0 is conservative over HA (Beeson 1979).

> Our Result: type theories with a single level of universes are

conservative over Higher-order Heyting Arithmetic (HAH).

The amount of conservativity depends on our interpretation of logic:

• for proof-irrelevant versions: they prove exactly the same

arithmetical theorems as HAH (of any order).

◦ for proof-relevant versions: they prove more second-order, but

the same first-order arithmetical theorems as HAH.
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Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain.

If we write ∃𝑥𝑛 or ∀𝑥𝑛 then 𝑥 is an element of the 𝑛-th powerset:

> 𝑥0 is an element of the domain,

> 𝑥1 is a set,

> 𝑥2 is a set of sets,

> and so on.

For 𝑥𝑛 and 𝑌 𝑛+1 we have a new atomic formula 𝑥 ∈ 𝑌.
We have two additional logical axiom schemes:

∀𝑋𝑛+1, 𝑌 𝑛+1 (∀𝑧𝑛 (𝑧 ∈ 𝑋 ↔ 𝑧 ∈ 𝑌 ) → 𝑋 = 𝑌 ), (extensionality)
∃𝑋𝑛+1 ∀𝑧𝑛 (𝑧 ∈ 𝑋 ↔ 𝜙[𝑧]). (comprehension)

HAH has the axioms of PA but in intuitionistic higher-order logic.
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Interpreting Logic in Type Theory

There are two interpretations of logic in type theory.

A proof-irrelevant way, using propositional truncation:

(𝐴 ∨ 𝐵)• ≔ ‖𝐴• + 𝐵•‖, (∃𝑥𝑛 𝐵[𝑥𝑛])• ≔ ‖Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]•‖,
(𝐴 ∧ 𝐵)• ≔ 𝐴• × 𝐵•, (∀𝑥𝑛 𝐵[𝑥𝑛])• ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]•,

(𝐴 → 𝐵)• ≔ 𝐴• → 𝐵•.

And a proof-relevant way:

(𝐴 ∨ 𝐵)◦ ≔ 𝐴◦ + 𝐵◦, (∃𝑥𝑛 𝐵[𝑥𝑛])◦ ≔ Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]◦,
(𝐴 ∧ 𝐵)◦ ≔ 𝐴◦ × 𝐵◦, (∀𝑥𝑛 𝐵[𝑥𝑛])◦ ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵[𝑥𝑛]◦,

(𝐴 → 𝐵)◦ ≔ 𝐴◦ → 𝐵◦.
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Interpreting Powersets in Type Theory

Using a universe 𝒰, we can define powertypes:

𝒫 𝐴 ≔ 𝐴 → 𝒰.

We use this to interpret higher-order logic:

> To satisfy extensionality, we need 𝒰 to satisfy:

funext ∶ Π(𝑓, 𝑓 ′ ∶ 𝒫 𝐴) (Π(𝑥 ∶ 𝐴) (𝑓 𝑥 = 𝑓 ′ 𝑥) → (𝑓 = 𝑓 ′)),
propext ∶ Π(𝑃 , 𝑃 ′ ∶ 𝒰) ((𝑃 ↔ 𝑃 ′) → (𝑃 = 𝑃 ′)).

Alternatively, we can use setoids or quotients.

> To satisfy comprehension, we need 𝒰 to be impredicative.

Alternatively, we can use propositional-resizing.

All alternatives give exactly the same conservativity results.
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Type Theory

We work with a restriction 𝜆C+ of the Calculus of Inductive

Constructions (the theory behind Coq and Lean).

We have two impredicative universes: Prop, Set ∶ Type.
> We use Prop to interpret propositions and powertypes.

For this universe we assume propext.

> We use Set for data types, and assume 𝟘, 𝟙, +, Σ, Π, =, ‖𝐴‖.
We can also assume W-types, uip, or even an extensional theory.

Lastly, we assume funext in general.
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Main Result (proof-irrelevant)

Theorem (for a proof-irrelevant interpretation)

𝜆C+ proves the same arithmetical formulas as HAH (of any order).

Proof Sketch. We can show that 𝜆C+ proves the axioms of HAH.

The difficult part is showing that it does not prove more.

We first give a conservative extension of HAH, named HAHP

⏞⏞⏞⏞⏞𝜆𝑥 𝑏[𝑥], ⟨𝑎,𝑏⟩

.

Then we construct an arrow:

HAH 𝜆C+

HAHP

•

And show that the diagram commutes up to logical equivalence.
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Realizability

We use realizability where we interpret:

propositions ⇝ subsingletons,
sets ⇝ partial equivalence relations (PERs),

types ⇝ assemblies or 𝜔-sets.

This takes inspiration from a well-known model for the calculus of

constructions (Hyland1988, Reus1999), modified in two ways:

> we restrict assemblies to those which live in some 𝒫𝑛 ℕ,

> we extend the interpretation to our extended theory.
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Main Result (proof-relevant)

Theorem (for a proof-relevant interpretation)

𝜆C+ proves more second-order, but the same first-order

arithmetical formulas as HAH.

Proof Sketch. An example of a second-order formula that is provable

in type theory but not in HAH is the axiom of choice.

For first-order formulas we modify our earlier proof.

We extend HAHP to HAHP𝜖 by adding a computable choice principle.

This theory is conservative over HAH, and we can construct an arrow:

HAH 𝜆C+

HAHP𝜖

◦

s.t. the diagram commutes for first-order formulas up to equiv. 11/12



Generalisations and Summary

We can restrict our methods to systems in the lambda cube to show:

𝜆C+ is conservative over HAH,
𝜆P2+ is conservative over HA2,
𝜆P+ is conservative over HA,

where the interpretation of logic determines the conservativity:

• for proof-irrelevant versions: conservativity for all formulas,

◦ for proof-relevant versions: conservativity for first-order, but not

for second- or higher-order formulas.
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