Conservativity of Type Theory over Higher-order Arithmetic

Daniël Otten

Joint work with Benno van den Berg

Overview

We investigate the relation between arithmetic and type theory.

In dependent type theory, the number of **universes** influence how much can prove about the natural numbers:

- > Classical Result: MLO is conservative over HA (Beeson 1979).
- > Our Result: type theories with a single level of universes are conservative over Higher-order Heyting Arithmetic (HAH).

The amount of conservativity depends on our interpretation of logic:

- for proof-irrelevant versions: they prove exactly the same arithmetical theorems as HAH (of any order).
- for proof-relevant versions: they prove more second-order, but the same first-order arithmetical theorems as HAH.

Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^n$ or $\forall x^n$ then x is an element of the *n*-th powerset:

- > x^0 is an element of the domain,
- x¹ is a set,
- > x² is a set of sets,
- > and so on.

For x^n and Y^{n+1} we have a new atomic formula $x \in Y$. We have two additional logical axiom schemes: $\forall X^{n+1}, Y^{n+1} (\forall z^n (z \in X \leftrightarrow z \in Y) \rightarrow X = Y)$, (extensionality) $\exists X^{n+1} \forall z^n (z \in X \leftrightarrow \phi[z])$. (comprehension)

HAH has the axioms of PA but in intuitionistic higher-order logic.

Interpreting Logic in Type Theory

There are two interpretations of logic in type theory.

A proof-irrelevant way, using propositional truncation:

$$\begin{split} (A \lor B)^{\bullet} &:= \|A^{\bullet} + B^{\bullet}\|, \quad (\exists x^{n} B[x^{n}])^{\bullet} &:= \|\Sigma(x : \mathcal{P}^{n} \mathbb{N}) B[x^{n}]^{\bullet}\|, \\ (A \land B)^{\bullet} &:= A^{\bullet} \times B^{\bullet}, \quad (\forall x^{n} B[x^{n}])^{\bullet} &:= \Pi(x : \mathcal{P}^{n} \mathbb{N}) B[x^{n}]^{\bullet}, \\ (A \to B)^{\bullet} &:= A^{\bullet} \to B^{\bullet}. \end{split}$$

And a proof-relevant way:

$$\begin{split} (A \lor B)^\circ &:= A^\circ + B^\circ, \qquad (\exists x^n \, B[x^n])^\circ := \Sigma(x:\mathcal{P}^n \, \mathbb{N}) \, B[x^n]^\circ, \\ (A \land B)^\circ &:= A^\circ \times B^\circ, \qquad (\forall x^n \, B[x^n])^\circ := \Pi(x:\mathcal{P}^n \, \mathbb{N}) \, B[x^n]^\circ, \\ (A \to B)^\circ &:= A^\circ \to B^\circ. \end{split}$$

Interpreting Powersets in Type Theory

Using a universe \mathcal{U} , we can define powertypes:

$$\mathcal{P} A \coloneqq A \to \mathcal{U}.$$

We use this to interpret higher-order logic:

> To satisfy extensionality, we need \mathcal{U} to satisfy:

$$\begin{split} & \mathsf{funext}: \Pi(f,f':\mathcal{P}\,A)\,(\Pi(x:A)\,(f\,x=f'\,x)\to(f=f')),\\ & \mathsf{propext}:\Pi(P,P':\mathcal{U})\,((P\leftrightarrow P')\to(P=P')). \end{split}$$

Alternatively, we can use setoids or quotients.

> To satisfy comprehension, we need \mathcal{U} to be impredicative. Alternatively, we can use propositional-resizing.

All alternatives give exactly the same conservativity results.

Type Theory

We work with a restriction $\lambda C+$ of the Calculus of Inductive Constructions (the theory behind Coq and Lean).

We have two impredicative universes: Prop, Set : Type.

- We use Prop to interpret propositions and powertypes.
 For this universe we assume propext.
- > We use Set for data types, and assume 0, 1, +, Σ, Π, =, ||A||.
 We can also assume W-types, uip, or even an extensional theory.

Lastly, we assume funext in general.

Main Result (proof-irrelevant)

Theorem (for a proof-irrelevant interpretation)

 $\lambda \rm C+$ proves the same arithmetical formulas as HAH (of any order).

Proof Sketch. We can show that $\lambda C+$ proves the axioms of HAH. The difficult part is showing that it does not prove more.

We first give a conservative extension of HAH, named HAHP. Then we construct an arrow: $\lambda x b[x], \langle a, b \rangle$

And show that the diagram commutes up to logical equivalence.

Realizability

We use realizability where we interpret:

propositions \rightsquigarrow subsingletons,

sets \rightarrow partial equivalence relations (PERs),

types \rightsquigarrow assemblies or ω -sets.

This takes inspiration from a well-known model for the calculus of constructions (Hyland1988, Reus1999), modified in two ways:

- > we restrict assemblies to those which live in some $\mathcal{P}^n \mathbb{N}$,
- > we extend the interpretation to our extended theory.

Main Result (proof-relevant)

Theorem (for a proof-relevant interpretation)

 $\lambda \rm C+$ proves more second-order, but the same first-order arithmetical formulas as HAH.

Proof Sketch. An example of a second-order formula that is provable in type theory but not in HAH is the axiom of choice.

For first-order formulas we modify our earlier proof.

We extend HAHP to HAHP ϵ by adding a computable choice principle. This theory is conservative over HAH, and we can construct an arrow:

s.t. the diagram commutes for first-order formulas up to equiv.

11/12

Generalisations and Summary

We can restrict our methods to systems in the lambda cube to show: $\lambda {\rm C} + {\rm is \ conservative \ over \ HAH},$

 λ P2+ is conservative over HA2,

 $\lambda P+$ is conservative over HA,

where the interpretation of logic determines the conservativity:

- for proof-irrelevant versions: conservativity for all formulas,
- for proof-relevant versions: conservativity for first-order, but not for second- or higher-order formulas.