Conservativity of Type Theory over Higher-order Arithmetic

Overview

We investigate the relation between arithmetic and type theory.
In dependent type theory, the number of universes influence how much can prove about the natural numbers:
> Classical Result: MLO is conservative over HA (Beeson 1979).
> Our Result: type theories with a single level of universes are conservative over Higher-order Heyting Arithmetic (HAH).

The amount of conservativity depends on our interpretation of logic:

- for proof-irrelevant versions: they prove exactly the same arithmetical theorems as HAH (of any order).
- for proof-relevant versions: they prove more second-order, but the same first-order arithmetical theorems as HAH.

Contents

arithmetic
 \rightleftarrows type theory

Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^{n}$ or $\forall x^{n}$ then x is an element of the n-th powerset:
$>x^{0}$ is an element of the domain,
$>x^{1}$ is a set,
$>x^{2}$ is a set of sets,
> and so on.
For x^{n} and Y^{n+1} we have a new atomic formula $x \in Y$.
We have two additional logical axiom schemes:
$\forall X^{n+1}, Y^{n+1}\left(\forall z^{n}(z \in X \leftrightarrow z \in Y) \rightarrow X=Y\right)$, (extensionality)

$$
\exists X^{n+1} \forall z^{n}(z \in X \leftrightarrow \phi[z]) . \quad \text { (comprehension) }
$$

HAH has the axioms of PA but in intuitionistic higher-order logic.

Contents
arithmetic \rightleftarrows type theory

Interpreting Logic in Type Theory

There are two interpretations of logic in type theory.
A proof-irrelevant way, using propositional truncation:

$$
\begin{aligned}
&(A \vee B)^{\bullet}:=\left\|A^{\bullet}+B^{\bullet}\right\|,\left(\exists x^{n} B\left[x^{n}\right]\right)^{\bullet}:=\left\|\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right] \bullet\right\| \\
&(A \wedge B)^{\bullet}:=A^{\bullet} \times B^{\bullet},\left(\forall x^{n} B\left[x^{n}\right]\right)^{\bullet}:=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\bullet} \\
&(A \rightarrow B)^{\bullet}:=A^{\bullet} \rightarrow B^{\bullet} .
\end{aligned}
$$

And a proof-relevant way:

$$
\begin{aligned}
(A \vee B)^{\circ}:=A^{\circ}+B^{\circ}, & \left(\exists x^{n} B\left[x^{n}\right]\right)^{\circ}:=\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\circ}, \\
(A \wedge B)^{\circ}:=A^{\circ} \times B^{\circ}, & \left(\forall x^{n} B\left[x^{n}\right]\right)^{\circ}:=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left[x^{n}\right]^{\circ}, \\
(A \rightarrow B)^{\circ}:=A^{\circ} \rightarrow B^{\circ} . &
\end{aligned}
$$

Interpreting Powersets in Type Theory

Using a universe \mathcal{U}, we can define powertypes:

$$
\mathcal{P} A:=A \rightarrow \mathcal{U} .
$$

We use this to interpret higher-order logic:
> To satisfy extensionality, we need \mathcal{U} to satisfy:

$$
\begin{aligned}
& \text { funext }: \Pi\left(f, f^{\prime}: \mathcal{P} A\right)\left(\Pi(x: A)\left(f x=f^{\prime} x\right) \rightarrow\left(f=f^{\prime}\right)\right) \text {, } \\
& \text { propext }: \Pi\left(P, P^{\prime}: \mathcal{U}\right)\left(\left(P \leftrightarrow P^{\prime}\right) \rightarrow\left(P=P^{\prime}\right)\right)
\end{aligned}
$$

Alternatively, we can use setoids or quotients.
> To satisfy comprehension, we need \mathcal{U} to be impredicative. Alternatively, we can use propositional-resizing.

All alternatives give exactly the same conservativity results.

Contents
arithmetic \rightleftarrows type theory

Type Theory

We work with a restriction $\lambda C+$ of the Calculus of Inductive Constructions (the theory behind Coq and Lean).

We have two impredicative universes: Prop, Set : Type.
> We use Prop to interpret propositions and powertypes.
For this universe we assume propext.
$>$ We use Set for data types, and assume $\mathbb{D}, \mathbb{1},+, \Sigma, \Pi,=,\|A\|$.
We can also assume W-types, uip, or even an extensional theory.
Lastly, we assume funext in general.

Contents
arithmetic \rightleftarrows type theory

Main Result (proof-irrelevant)

Theorem (for a proof-irrelevant interpretation)

$\lambda C+$ proves the same arithmetical formulas as HAH (of any order).

Proof Sketch. We can show that $\lambda \mathrm{C}+$ proves the axioms of HAH.
The difficult part is showing that it does not prove more.
We first give a conservative extension of HAH, named HAHP.
Then we construct an arrow:

$$
\overbrace{\lambda x b[x],\langle a, b\rangle}
$$

And show that the diagram commutes up to logical equivalence.

Realizability

We use realizability where we interpret: propositions \leadsto subsingletons, sets \leadsto partial equivalence relations (PERs), types \leadsto assemblies or ω-sets.

This takes inspiration from a well-known model for the calculus of constructions (Hyland1988, Reus1999), modified in two ways:
> we restrict assemblies to those which live in some $\mathcal{P}^{n} \mathbb{N}$,
> we extend the interpretation to our extended theory.

Main Result (proof-relevant)

Theorem (for a proof-relevant interpretation)

$\lambda C+$ proves more second-order, but the same first-order

 arithmetical formulas as HAH.Proof Sketch. An example of a second-order formula that is provable in type theory but not in HAH is the axiom of choice.

For first-order formulas we modify our earlier proof.
We extend HAHP to HAHP ϵ by adding a computable choice principle. This theory is conservative over HAH, and we can construct an arrow:

s.t. the diagram commutes for first-order formulas up to equiv.

Generalisations and Summary

We can restrict our methods to systems in the lambda cube to show:

$$
\begin{gathered}
\lambda \mathrm{C}+\text { is conservative over HAH, } \\
\lambda \mathrm{P} 2+\text { is conservative over HA2, } \\
\lambda \mathrm{P}+\text { is conservative over HA, }
\end{gathered}
$$

where the interpretation of logic determines the conservativity:

- for proof-irrelevant versions: conservativity for all formulas,
- for proof-relevant versions: conservativity for first-order, but not for second- or higher-order formulas.

