De Jongh's Theorem for Type Theory

Daniël Otten
Supervised by Dr. Benno van den Berg

Overview

We investigate the relation between arithmetic and type theory.
We compare:

- Second-order Heyting Arithmetic (HA2),
- Second-order Propositional Lambda Calculus (λ P2), along with some additional assumptions ($\lambda \mathrm{P} 2+$). $\overbrace{\text { ind, uip, funext }}$
Our main results are that $\lambda \mathrm{P} 2+$ proves:
- the same first-order arithmetical formulas as HA2,
- more second-order arithmetical formulas than HA2.

This allows us to translate De Jongh's Theorem from HA2 to λ P2 2 .

Contents
arithmetic \rightleftarrows type theory

Arithmetic

In second-order logic we can quantify over n-ary relation symbols:

$$
\exists X^{n}, \quad \forall X^{n} .
$$

HA2 is the constructive second-order theory with:

$$
\text { a constant } 0, \quad \text { a unary function symbol } \mathrm{S},
$$

and axioms

$$
\begin{gathered}
\forall x(\mathrm{~S}(x) \neq 0), \\
\forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y), \\
\forall X^{1}(X(0) \wedge \forall x(X(x) \rightarrow X(\mathrm{~S}(x))) \rightarrow \forall x X(x)) .
\end{gathered}
$$

Addition and multiplication can be defined in HA2.

The Lambda Cube

$\lambda P 2$ is part of a larger family of type theories (the lambda cube):

Our choice for λ P2 has two justifications:

- it is the minimal theory that can interpret arithmetical formulas,
- it is the maximal theory that can be realized in arithmetic.

Basic Types

In λ P2 we can define the following terms and types:

$$
\begin{array}{rlr}
0, & \text { (empty type) } \\
*: \mathbb{1}, & \text { (unit type) } \\
0, \mathrm{~S} n & : \mathbb{N}, & \text { (natural numbers) } \\
\mathrm{in}_{0} a, \mathrm{in}_{1} b & : A+B, & \text { (disjoint union) } \\
\langle a, b\rangle & : A \times B, & \text { (Cartesian product) } \\
\lambda(x: A) b(x) & : A \rightarrow B, & \text { (function space) } \\
\langle a, b\rangle & : \Sigma(x: A) B(x), & \text { (dependent Cartesian product) } \\
\lambda(x: A) b(x) & : \Pi(x: A) B(x) . & \text { (dependent function space) }
\end{array}
$$

Size

λ P2 makes a distinction between small and large types.
The types we have seen until now are all small.
In λ P2 there exists a large type Type $_{0}$ that contains all small types.
The following types also exist if either A or B is large:

$$
\begin{aligned}
& A \rightarrow B \\
& \Pi(x: A) B(x) .
\end{aligned}
$$

(function space)
(dependent function space)
These types have the same size as B.

Formulas as Types

We can interpret arithmetical formulas as types (Curry-Howard):

```
        \perp as 0,
        \top as }\mathbb{1}
        A\veeB as }A+B
        A\wedgeB as }A\timesB
        A->B as }A->B
        \existsxB(x) as \Sigma(x:\mathbb{N})B(x),
        \forallxB(x) as }\Pi(x:\mathbb{N})B(x)
\exists\mp@subsup{X}{}{n}B(X) as \Sigma(X:\mathbb{N}\times\cdots\times\mathbb{N}->\mp@subsup{\mathrm{ Type }}{0}{})B(X),
\forall\mp@subsup{X}{}{n}B(X) as }\Pi(X:\mathbb{N}\times\cdots\times\mathbb{N}->\mp@subsup{\mathrm{ Type }}{0}{})B(X)
```

We say that $\lambda \mathrm{P} 2$ proves the formula if the type is non-empty.

Main Results

Theorem (first-order)

λ P2 + proves the same first-order arithmetical formulas as HA2.

Proof Sketch. We can show that λ P2+ proves the axioms of HA2.
The difficulty is showing that $\lambda \mathrm{P} 2+$ does not prove more than HA2.
We first give a conservative extension of HA2, named HAP2 ϵ.
Then we construct an arrow:
$\overbrace{\lambda x b(x),\langle a, b\rangle}$ comp choice

And we show that the diagram commutes for first-order formulas (up to logical equivalence).

Main Results

Theorem (second-order)

λ P2 + proves more second-order arithmetical formulas than HA2.

Proof Sketch. We consider the axiom of choice:

$$
\begin{aligned}
& \forall Z^{2}(\forall x \exists y Z(x, y) \rightarrow \\
& \quad \exists F^{2}(\forall x \exists!y F(x, y) \wedge \forall x \forall y(F(x, y) \rightarrow Z(x, y))) .
\end{aligned}
$$

This is provable in $\lambda \mathrm{P} 2+$ but not in HA2.

De Jongh's Theorem

Now we can translate De Jongh's Theorem from HA2 to λ P2+.

De Jongh's Theorem for HA2

Suppose that a propositional formula $A\left(P_{0}, \ldots, P_{n-1}\right)$ is not provable in constructive propositional logic. Then there exist first-order arithmetical sentences B_{0}, \ldots, B_{n-1} such that:

$$
\text { HA } 2 \nvdash A\left(B_{0}, \ldots, B_{n-1}\right) \text {. }
$$

Example: Consider the law of the excluded middle $P \vee \neg P$.
There exists a first-order arithmetical sentence B such that:

$$
\text { HA } 2 \nvdash B \vee \neg B \text {. }
$$

Because λ P2+ and HA prove the same first-order arithmetical formulas, we see that the theorem also holds for $\lambda \mathrm{P} 2+$ (and $\lambda \mathrm{P} 2$).

Conclusion

We have seen that $\lambda \mathrm{P} 2+$ proves:

- the same first-order arithmetical formulas as HA2,
- more second-order arithmetical formulas than HA2.

This shows that De Jongh's Theorem also holds for λ P2+:
the propositional logic of $\lambda \mathrm{P} 2+$ is constructive.
This also shows that the propositional logic of every smaller type theory is constructive: simply-typed lambda calculus, system $\mathrm{F}, \lambda \mathrm{P} 2$.

Future work:

- Does λ P2 already proof more arithmetical formulas than HA2?
- Is the first-order logic of HA2 constructive? (then also of λ P2+)

