De Jongh's Theorem for Type Theory

Daniël Otten

Supervised by Dr. Benno van den Berg

Overview

We investigate the relation between arithmetic and type theory.

We compare:

- Second-order Heyting Arithmetic (HA2),
- Second-order Propositional Lambda Calculus (λ P2), along with some additional assumptions (λ P2+).

ind, uip, funext

Our main results are that $\lambda P2+$ proves:

- the same first-order arithmetical formulas as HA2,
- more second-order arithmetical formulas than HA2.

This allows us to translate De Jongh's Theorem from HA2 to λ P2+.

Contents

Arithmetic

In second-order logic we can quantify over *n*-ary relation symbols:

$$\exists X^n, \qquad \forall X^n.$$

HA2 is the constructive second-order theory with:

a constant 0, a unary function symbol S,

and axioms

$$\begin{split} \forall x \, (\mathbf{S}(x) \neq 0), \\ \forall x \, \forall y \, (\mathbf{S}(x) = \mathbf{S}(y) \rightarrow x = y), \\ \forall X^1 \, (X(0) \land \forall x \, (X(x) \rightarrow X(\mathbf{S}(x))) \rightarrow \forall x \, X(x)). \end{split}$$

Addition and multiplication can be defined in HA2.

The Lambda Cube

 $\lambda P2$ is part of a larger family of type theories (the lambda cube):

Our choice for $\lambda P2$ has two justifications:

- it is the minimal theory that can interpret arithmetical formulas,
- it is the maximal theory that can be realized in arithmetic.

Basic Types

In λ P2 we can define the following terms and types:

(empty type)	0,	
(unit type)	1,	* :
(natural numbers)	$\mathbb{N},$	$0, {\sf S} n :$
(disjoint union)	A+B,	$\operatorname{in}_0 a, \ \operatorname{in}_1 b \ :$
(Cartesian product)	$A \times B$,	$\langle a,b angle$:
(function space)	$A \rightarrow B,$	x:A)b(x):
(dependent Cartesian product)	$\Sigma(x:A)B(x),$	$\langle a,b angle$:
(dependent function space)	$\Pi(x:A)B(x).$	x:A) b(x) :

 λ P2 makes a distinction between small and large types.

The types we have seen until now are all small.

In λ P2 there exists a large type Type₀ that contains all small types.

The following types also exist if either A or B is large:

 $A \to B,$ (function space) $\Pi(x:A) B(x).$ (dependent function space)

These types have the same size as B.

Formulas as Types

We can interpret arithmetical formulas as types (Curry-Howard):

 \perp as 0. \top as 1. $A \lor B$ as A + B, $A \wedge B$ as $A \times B$. $A \to B$ as $A \to B$. $\exists x B(x) \text{ as } \Sigma(x:\mathbb{N}) B(x),$ $\forall x B(x) \text{ as } \Pi(x:\mathbb{N}) B(x),$ $\exists X^n B(X) \text{ as } \Sigma(X : \mathbb{N} \times \cdots \times \mathbb{N} \to \mathsf{Type}_0) B(X),$ $\forall X^n B(X) \text{ as } \Pi(X : \mathbb{N} \times \cdots \times \mathbb{N} \to \mathsf{Type}_0) B(X).$ We say that $\lambda P2$ proves the formula if the type is non-empty.

Main Results

Theorem (first-order)

 λ P2+ proves the same first-order arithmetical formulas as HA2.

Proof Sketch. We can show that $\lambda P2+$ proves the axioms of HA2. The difficulty is showing that $\lambda P2+$ does not prove more than HA2.

We first give a conservative extension of HA2, named HAP 2ϵ .

Then we construct an arrow:

And we show that the diagram commutes for first-order formulas (up to logical equivalence).

Theorem (second-order)

 λ P2+ proves more second-order arithmetical formulas than HA2.

Proof Sketch. We consider the axiom of choice:

$$\forall Z^2 \left(\forall x \, \exists y \, Z(x,y) \rightarrow \right.$$

 $\exists F^2 \; (\forall x \, \exists ! y \, F(x,y) \land \forall x \, \forall y \, (F(x,y) \to Z(x,y))).$

This is provable in λ P2+ but not in HA2.

De Jongh's Theorem

Now we can translate De Jongh's Theorem from HA2 to λ P2+.

De Jongh's Theorem for HA2

Suppose that a propositional formula $A(P_0, ..., P_{n-1})$ is not provable in constructive propositional logic. Then there exist first-order arithmetical sentences $B_0, ..., B_{n-1}$ such that: HA2 $\nvDash A(B_0, ..., B_{n-1})$.

Example: Consider the law of the excluded middle $P \lor \neg P$. There exists a first-order arithmetical sentence *B* such that:

$$\mathsf{HA2} \nvDash B \lor \neg B.$$

Because λ P2+ and HA prove the same first-order arithmetical formulas, we see that the theorem also holds for λ P2+ (and λ P2).

Conclusion

We have seen that $\lambda P2+$ proves:

- the same first-order arithmetical formulas as HA2,
- more second-order arithmetical formulas than HA2.

This shows that De Jongh's Theorem also holds for λ P2+: the propositional logic of λ P2+ is constructive.

This also shows that the propositional logic of every smaller type theory is constructive: simply-typed lambda calculus, system F, λ P2.

Future work:

- Does $\lambda P2$ already proof more arithmetical formulas than HA2?
- Is the first-order logic of HA2 constructive? (then also of λ P2+)