Fixpoint Logic

 μ -calculus

Lide Grotenhuis & Daniël Otten

Contents

- 1 Introduction
- 2 Syntax and semantics
- 3 Game semantics
- 4 Decidability

Introduction

Fact

The bisimulation invariant fragment of FOL is modal logic. The bisimulation invariant fragment of MSO is modal μ -calculus.

Theorem

Satisfiability for modal μ -calculus is decidable.

Modal mu-calculus

Syntax

 $\phi \, ::= \, \top \mid \perp \mid p \mid \overline{p} \mid \phi \lor \psi \mid \phi \land \psi \mid \Diamond \phi \mid \Box \phi \mid \mu x.\phi(x) \mid \nu x.\phi(x)$

Note: x can only appear positively in $\phi(x)$.

Semantics

For a Kripke model M = (S, R, V) we define:

 $M, s \Vdash \mu x.\phi(x)$ iff $s \in T$ for the minimal $T \subseteq S$ with $T = \llbracket \phi(P_T) \rrbracket$; $M, s \Vdash \nu x.\phi(x)$ iff $s \in T$ for the maximal $T \subseteq S$ with $T = \llbracket \phi(P_T) \rrbracket$.

where P_T is a new proposition that holds precisely on T.

Example

Semantics

 $M, s \Vdash \mu x. \phi(x)$ iff $s \in T$ for the minimal $T \subseteq S$ with $T = \llbracket \phi(P_T) \rrbracket$.

What is $\mu x.p \lor \Diamond x$? Idea: build up from \emptyset .

$$\begin{split} T_0 &:= \llbracket \bot \rrbracket, \\ T_1 &:= \llbracket p \lor \Diamond \bot \rrbracket, \\ T_2 &:= \llbracket p \lor \Diamond (p \lor \Diamond \bot) \rrbracket, \\ &\vdots \\ T_\omega &:= \bigcup_{n \geq 0} T_n = \llbracket \Diamond^* p \rrbracket \end{split}$$

Note: not expressible in modal logic!

Example

Semantics

 $M, s \Vdash \nu x. \phi(x)$ iff $s \in T$ for the maximal $T \subseteq S$ with $T = \llbracket \phi(P_T) \rrbracket$.

What is $\nu x.p \lor \Diamond x$? Idea: break down from S. $T_0 := \llbracket \top \rrbracket$, $T_1 := \llbracket p \lor \Diamond \top \rrbracket$, $T_2 := \llbracket p \lor \Diamond (p \lor \Diamond \top) \rrbracket$, \vdots $T_\omega := \bigcap_{n \ge 0} T_n = \llbracket \Diamond^* p \lor \Diamond^\omega \top \rrbracket$

Note: not expressible in modal logic!

Game semantics

 $M, s \Vdash \phi$ iff (s, ϕ) is a winning position for \top in the following game:

Position	Next move (if any)
(s, \top)	op wins,
(s, \perp)	\perp wins,
(s,p)	$ op$ wins iff $s \in V(p)$,
(s,\overline{p})	\bot wins iff $s\in V(p)$,
$(s,\phiee\psi)$	$ op$ can play (s,ϕ) or (s,ψ) ,
$(s,\phi\wedge\psi)$	\perp can play (s,ϕ) or (s,ψ) ,
$(s,\Diamond\phi)$	$ op$ can play (t,ϕ) with sRt ,
$(s,\Box\phi)$	\perp can play (t,ϕ) with sRt ,
$(s,\mu x.\phi_x(x))$	automatic move to $(s,\phi_x(x))$,
$(s,\nu x.\phi_x(x))$	automatic move to $(s,\phi_x(x))$,
(s,x)	automatic move to $(s, \phi_x(x))$.

Example

How does this work for $\mu x.p \lor \Diamond x$?

Position	Next move (if any)
(s, op)	op wins,
(s, \perp)	\perp wins,
(s,p)	$ op$ wins iff $s \in V(p)$,
(s,\overline{p})	\bot wins iff $s\in V(p)$,
$(s,\phiee\psi)$	$ op$ can play (s,ϕ) or (s,ψ) ,
$(s,\phi\wedge\psi)$	\perp can play (s,ϕ) or (s,ψ) ,
$(s,\Diamond\phi)$	$ op$ can play (t,ϕ) with sRt ,
$(s,\Box\phi)$	\perp can play (t,ϕ) with sRt ,
$(s,\mu x.\phi_x(x))$	automatic move to $(s,\phi_x(x))$,
$(s,\nu x.\phi_x(x))$	automatic move to $(s,\phi_x(x))$,
(s,x)	automatic move to $(s, \phi_x(x))$.

Infinite games

For an infinite game:

- if the (outermost) looped variable is a μ -variable then \perp wins,
- if the (outermost) looped variable is a ν -variable then \top wins.

Bisimulation invariance

Theorem

Modal μ -calculus is bisimulation invariant.

Proof Sketch. Suppose $M, s \leftrightarrow M', s'$ and $M, s \Vdash \phi$. Then (s, ϕ) is a winning position for \top .

Key idea: Use bisimulation to mimic \top 's winning strategy for (s, ϕ) to obtain a winning strategy for (s', ϕ) .

Decidability

Theorem (Grädel)

Model μ -calculus has the Lowenheim-Skolem property.

Corollary

If a formula is satisfiable then it is satisfiable in a countable tree model.

Theorem (Rabin)

The MSO theory of all countable trees is decidable.

Corollary

Satisfiability in the μ -calculus is decidable.

Bibliography

- [1] Grädel, E. (1999). The decidability of guarded fixed point logic. Available at: http://festschriften.illc.uva.nl/j50/ contribs/graedel/graedel.pdf
- [2] Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite trees. *Transactions of the american Mathematical Society*, 141, 1-35.
- [3] Venema, Y. (2020). Lectures on the modal mu-calculus. Available at: https://staff.fnwi.uva.nl/y.venema/ teaching/ml/notes/20201212-mu.pdf