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Introduction

Fact

The bisimulation invariant fragment of FOL is modal logic.

The bisimulation invariant fragment of MSO is modal 𝜇-calculus.

Theorem

Satisfiability for modal 𝜇-calculus is decidable.
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Modal mu-calculus

Syntax

𝜙 ∶∶= ⊤ | ⊥ | 𝑝 | 𝑝 | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓 | ♦𝜙 | �𝜙 | 𝜇𝑥.𝜙(𝑥) | 𝜈𝑥.𝜙(𝑥)

Note: 𝑥 can only appear positively in 𝜙(𝑥).

Semantics

For a Kripke model 𝑀 = (𝑆, 𝑅, 𝑉 ) we define:

𝑀, 𝑠 ⊩ 𝜇𝑥.𝜙(𝑥) iff 𝑠 ∈ 𝑇 for the minimal 𝑇 ⊆ 𝑆 with 𝑇 = J𝜙(𝑃𝑇)K;
𝑀, 𝑠 ⊩ 𝜈𝑥.𝜙(𝑥) iff 𝑠 ∈ 𝑇 for the maximal 𝑇 ⊆ 𝑆 with 𝑇 = J𝜙(𝑃𝑇)K.

where 𝑃𝑇 is a new proposition that holds precisely on 𝑇.
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Example

Semantics

𝑀, 𝑠 ⊩ 𝜇𝑥.𝜙(𝑥) iff 𝑠 ∈ 𝑇 for the minimal 𝑇 ⊆ 𝑆 with 𝑇 = J𝜙(𝑃𝑇)K.

What is 𝜇𝑥.𝑝 ∨ ♦𝑥?
Idea: build up from ∅.

𝑇0 ∶= J⊥K,
𝑇1 ∶= J𝑝 ∨ ♦⊥K,
𝑇2 ∶= J𝑝 ∨ ♦(𝑝 ∨ ♦⊥)K,

⋮
𝑇𝜔 ∶= ⋃

𝑛≥0
𝑇𝑛 = J♦∗𝑝K

Note: not expressible in modal logic!
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Example

Semantics

𝑀, 𝑠 ⊩ 𝜈𝑥.𝜙(𝑥) iff 𝑠 ∈ 𝑇 for the maximal 𝑇 ⊆ 𝑆 with 𝑇 = J𝜙(𝑃𝑇)K.

What is 𝜈𝑥.𝑝 ∨ ♦𝑥?
Idea: break down from 𝑆.

𝑇0 ∶= J⊤K,
𝑇1 ∶= J𝑝 ∨ ♦⊤K,
𝑇2 ∶= J𝑝 ∨ ♦(𝑝 ∨ ♦⊤)K,

⋮
𝑇𝜔 ∶= ⋂

𝑛≥0
𝑇𝑛 = J♦∗𝑝 ∨ ♦𝜔⊤K

Note: not expressible in modal logic!
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Game semantics

𝑀, 𝑠 ⊩ 𝜙 iff (𝑠, 𝜙) is a winning position for ⊤ in the following game:

Position Next move (if any)

(𝑠, ⊤) ⊤ wins,

(𝑠, ⊥) ⊥ wins,

(𝑠, 𝑝) ⊤ wins iff 𝑠 ∈ 𝑉 (𝑝),
(𝑠, 𝑝) ⊥ wins iff 𝑠 ∈ 𝑉 (𝑝),
(𝑠, 𝜙 ∨ 𝜓) ⊤ can play (𝑠, 𝜙) or (𝑠, 𝜓),
(𝑠, 𝜙 ∧ 𝜓) ⊥ can play (𝑠, 𝜙) or (𝑠, 𝜓),
(𝑠,♦𝜙) ⊤ can play (𝑡, 𝜙) with 𝑠𝑅𝑡,
(𝑠,�𝜙) ⊥ can play (𝑡, 𝜙) with 𝑠𝑅𝑡,
(𝑠, 𝜇𝑥.𝜙𝑥(𝑥)) automatic move to (𝑠, 𝜙𝑥(𝑥)),
(𝑠, 𝜈𝑥.𝜙𝑥(𝑥)) automatic move to (𝑠, 𝜙𝑥(𝑥)),
(𝑠, 𝑥) automatic move to (𝑠, 𝜙𝑥(𝑥)).
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Example

How does this work for 𝜇𝑥.𝑝 ∨ ♦𝑥?

Position Next move (if any)

(𝑠, ⊤) ⊤ wins,

(𝑠, ⊥) ⊥ wins,

(𝑠, 𝑝) ⊤ wins iff 𝑠 ∈ 𝑉 (𝑝),
(𝑠, 𝑝) ⊥ wins iff 𝑠 ∈ 𝑉 (𝑝),
(𝑠, 𝜙 ∨ 𝜓) ⊤ can play (𝑠, 𝜙) or (𝑠, 𝜓),
(𝑠, 𝜙 ∧ 𝜓) ⊥ can play (𝑠, 𝜙) or (𝑠, 𝜓),
(𝑠,♦𝜙) ⊤ can play (𝑡, 𝜙) with 𝑠𝑅𝑡,
(𝑠,�𝜙) ⊥ can play (𝑡, 𝜙) with 𝑠𝑅𝑡,
(𝑠, 𝜇𝑥.𝜙𝑥(𝑥)) automatic move to (𝑠, 𝜙𝑥(𝑥)),
(𝑠, 𝜈𝑥.𝜙𝑥(𝑥)) automatic move to (𝑠, 𝜙𝑥(𝑥)),
(𝑠, 𝑥) automatic move to (𝑠, 𝜙𝑥(𝑥)).
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Infinite games

For an infinite game:

• if the (outermost) looped variable is a 𝜇-variable then ⊥ wins,

• if the (outermost) looped variable is a 𝜈-variable then ⊤ wins.
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Bisimulation invariance

Theorem

Modal 𝜇-calculus is bisimulation invariant.

Proof Sketch. Suppose 𝑀, 𝑠 ↔ 𝑀 ′, 𝑠′ and 𝑀, 𝑠 ⊩ 𝜙. Then (𝑠, 𝜙) is
a winning position for ⊤.

Key idea: Use bisimulation to mimic ⊤’s winning strategy for (𝑠, 𝜙)
to obtain a winning strategy for (𝑠′, 𝜙).
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Decidability

Theorem (Grädel)

Model 𝜇-calculus has the Lowenheim-Skolem property.

Corollary

If a formula is satisfiable then it is satisfiable in a countable tree

model.

Theorem (Rabin)

The MSO theory of all countable trees is decidable.

Corollary

Satisfiability in the 𝜇-calculus is decidable.
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